Health

DNA Testing and Autosomal Recessive Genes

Certain inherited conditions are caused by autosomal recessive genes that are faulty and this means that puppies need to inherit one copy of the faulty gene from each parent to develop the condition; both dog and bitch puppies can be affected.

If it has no copies of the faulty gene it is clear and can never develop the disease nor pass on a defective gene.  If it only receives one copy it will be a carrier and will never develop the disease, but will pass on the gene to about 50% its offspring.  The difficulties arise firstly in identifying those dogs that are carriers, because if you mate carrier to carrier, bearing in mind they show no signs of the disease or of being a carrier, then about 25% of the offspring will be affected, about 50% will be carriers and about 25% will be clear.  Without a DNA test carriers can only be identified if they produce affected puppies and only then if mated to another carrier and by then, particularly if the disease is one that has a late onset, many puppies could be carriers waiting to be mated to other carriers.  The second difficulty is identifying affected stock if the condition does not occur until the dog is relatively old.

With a DNA test breeders know for certain whether a dog is affected, carrier or clear and that will help them make informed decisions.  Breed Clubs, in conjunction with KC, are able to formulate a control scheme that is individually tailored to their breed.

Each DNA test is specific to a particular mutation and will not establish whether or not a puppy will develop another condition.

CLEAR:  has two normal genes so will never develop the specific condition for which the test is designed.  It can only pass on a normal gene to its offspring.

CARRIER:  has one faulty gene and one normal gene and will never develop the condition for which the test is designed but will pass on either a normal or faulty gene to its offspring: approximately half of its progeny will inherit the mutant gene.

AFFECTED: has two copies of the faulty gene and will develop the condition for which the test is designed. It can only pass on the faulty gene to its offspring.

significance for breeding

By establishing the genetic status of a dog and bitch before mating it is possible to predict the probability of the clear, carrier or affected pups in that mating.

Any mating that produces an affected pup should be avoided so there should be no matings of carrier to carrier, carrier to affected or affected to affected. By avoiding these combinations then no more puppies affected with the condition for which the test is designed need be born. 

Clear to clear is the ideal mating as it will not produce affecteds or carriers but this may not be possible immediately after a test becomes available as it will depend on the number of carriers within the breed.

However, always providing one parent is clear, other combinations can be used that do not produce affecteds.  Clear to carrier will produce a combination of clears and carriers and the puppies will need to be tested if they are going to be used for breeding. Clear to affected will produce all carriers and this combination is best avoided. By careful selection of parents and only using a carrier with other desirable characteristics and of particular merit to the breed it is possible to retain breed characteristics and, over the generations, breed out carriers. If there are many carriers in a breed then it would be inadvisable to discount them as the subsequent breeding pool could be greatly diminished.

 

It is important to realise, with the exception of affected to affected, clear to clear and also affected to clear the percentages are only statistical and will vary from litter to litter.

In Irish Setters we have 3 DNA tests available.

Both the PRA rcd1 and CLAD tests have been used effectively and it appears that both conditions have been eradicated from the breed in Kennel Club registered stock in the UK. The latest test for PRA rcd4 is available to breeders and there is no reason why the same success should not be had with this latest test.

This article has been reviewed by Professor Jeff Sampson the Kennel Club's Canine Geneticist, now retired.

Wednesday, April 27, 2016 - 22:04
Epilepsy Research at Helsinki University

Hannes Lohi and his team at Helsinki University are carrying out  research  into epilepsy in Irish  Setters. Below is a statement from Lotta Koskinen who is involved:

 RESEARCH – DNA SAMPLES NEEDED! 

Right now we are gathering more samples from Irish Red Setters with idiopathic epilepsy and for the research we are also gathering samples from over 7 year old healthy dogs and dogs with epilepsy in the close family. Adjoining the samples, we also gather general health information with a form and illness descriptions from the dogs with idiopathic epilepsy with a separate epilepsy questionnaire.

Instructions for taking the sample and sending it to us can be found at:

http://www.koirangeenit.fi/in-english/participate/

The epilepsy questionnaire can be found here in several different languages:

http://www.koirangeenit.fi/osallistuminen/lomakkeet/

At the moment we have samples from 134 Irish Red Setters in our data base and six out of these have epilepsy. We have seven samples from Irish Red and White Setters. We have however done preliminary research in identifying epilepsy genes with samples from our partner in the United States of America. That research consisted of 75 dogs (40 with epilepsy and 35 comparison dogs). This also included samples from six Finnish dogs. With this set of samples we couldn’t find genes predisposing to epilepsy and we are now continuing our research by collecting new samples.

The Dutch Irish Setter Club has been in contact with us earlier and we have agreed on a sample collection with them. Our partner veterinarians from the University of Utrecht are coordinating the local sample collection. Samples from other countries can be sent directly to us.

Unfortunately I cannot say for certainty how many samples we need in this breed to find the genes causing epilepsy. On top of the actual amount of samples many other things have an influence, such as how “unified” the genetic background for epilepsy is in this breed. If the genes don’t play a major part or there are several genes behind the illness we need a lot more samples than if there was only one gene determining a majority of the illness. If the epilepsy symptoms are very mild or seizures are rare, it might be difficult for the owner to recognise the illness and thus there could be affected dogs among the healthy comparison group. That is another reason why the sample amount should be as high as possible so these aberrations wouldn’t play such an important role in the results.

Finding the gene is a sum of many things, e.g. the amount of samples, the amount of predisposing factors for epilepsy in the breed and the accuracy and reliability of the information related to the dogs in the research. Our goal could be to gather up samples from 80 to 100 dogs with idiopathic epilepsy and continue the research with this material.

Best regards    Lotta Koskinen

She writes further :

We are collecting samples from dogs with epilepsy, and from healthy  old (age >7 years) dogs. Also samples of relatives of dogs with  epilepsy can be useful, especially if the relatives also have  epilepsy. Along with samples, we also collect detailed health information and pedigree information from each dog. We have a "sample form" we would like to be filled on each sampled dog, and for dogs with epilepsy we also have a 10-page epilepsy questionnaire. Both forms (sample form and epilepsy questionnaire) can be downloaded here:   

http://www.koirangeenit.fi/in-english/participate/ 

Because taking blood samples for research purposes is not possible in  the UK, we could take buccal swab samples instead.

 

Swab kits are now available for this research and include:

Two questionnaires which they ask you to complete. More copies of either can be downloaded from the link above.

A leaflet giving sample taking instructions for the DNA test. It is important that there is no contamination from other dogs and extra care needs to be taken if you have more than one dog at home. If providing more than one sample please make sure each one is labelled correctly and is for the right dog. Please take the samples as carefully as possible and according to the instructions. This is important, because there can be a lot of variation in the DNA yield depending on how the samples are taken. They have noticed now that they have started with the DNA extractions that the DNA yield has often been quite low. Taking buccal swab samples is not always easy, because it is really important to brush the buccal surface several (around 20) times on both sides of the dog's mouth. This is the only way to get enough DNA for large-scale genetic studies.

A letter giving permission for the samples to be sent from one EU country to another and one for our Royal Mail which you must sign.

Please make sure that you enclose your dogs’ pedigree as well. This information will not be divulged by the University. Results will be released only with your consent.

Please note that although the sample form mentions blood samples we are submitting buccal swabs. It may take longer than the 2 – 3 days mentioned to get to the University from UK so either sending the swab on a Monday may be best or at the end of the week so it doesn’t arrive at the weekend. Please consider sending it by express mail.

 

If you would like a pack or further information  please contact either:
Lynne Dale: hartsfellattalktalk [dot] net or Meg Webb: megwebb1ataol [dot] com

All packs are provided free of charge and your only cost is sending the swabs to Finland.

This initiative is supported by the Joint Irish Setter Breed Clubs' Committee.

 

 

Tuesday, June 28, 2016 - 19:16
2011 Breed Health Survey

Online Survey Results

In 2011, the Joint Health Coordinators Group set up an anonymous online survey to gather information about the incidence of diseases in the setter breed between 2005 and 2010. Diseases that are known or have been suggested to have a genetic basis were specifically investigated.  The survey results have now been analysed and give a snapshot of potential inherited problems in the breed. These results will not just allow the Group to focus on current problems but will also provide hard evidence for researchers seeking funding to investigate these problems. So I must therefore thank all Irish setter breeders and owners who took the time to complete the survey; the large number of responses received serves to strengthen any conclusions.

In fact, two surveys were conducted; one for owners of breeding bitches, and one for owners of stud dogs and pet setters. In total we had 159 owners of breeding bitches reporting on 767 puppies, and 361 stud dog and pet owners reporting on 1,031 dogs. The reason for this dual approach was to test the validity of the results. If results between the two surveys were vastly different, it might suggest that one group was being ‘economical with the truth’. In fact, the results were, gratifyingly, very comparable. Of course the survey was anonymous and we cannot know how many individual dogs may have been reported in both surveys; nevertheless the minimum number of unique dogs has to be over 1000, which is a fantastic response.

A summary of the key results is tabulated.

Disease category

Breeding bitch survey

Stud dog / non-breeding pet survey

 

Percentage

Percentage

Entropion

9.25

6.49

Epilepsy

3.91

4.46

GDV / Bloat

9.13

9.99

Hip dysplasia causing signs

1.83

1.36

Megaoesophagus

3.91

2.71

In addition, the good news is that there were no (or only one) report of a number of conditions that have been listed as an inherited problem in the breed in the scientific literature, namely anal furunculosis, galactocerebrocidosis, carpal subluxation, osteosarcoma and tricuspid valve dysplasia.

Respondents were also asked to name other conditions of concern, and Cushing’s disease (a steroid hormone problem) and cancer were most frequently named. This new information again allows your Health Coordinators to focus on real problems, and further more targeted surveys may be instituted in future.

The current survey results have highlighted some areas of concern; clearly bloat (syn. gastric torsion, gastric dilatation/volvulus, GDV) is the most common condition reported, and was also chosen by over half of all respondents as the condition that concerned them the most. The survey was however, performed before the identification of PRA rcd4. Entropion (rolled-in eyelids) was reported in similar numbers, but respondents did not consider it such an important issue, presumably because it is not life-threatening.

Finally, as a caveat, we can not simply extrapolate to say that ~10 % of all setters are affected with bloat; it must be pointed out that the reported incidence of any condition may be biased by breeders/owners of afflicted dogs being more inclined to complete the survey. However, the relative incidence of the different conditions still provides guidance as to what diseases we should focus our efforts on in order to improve the health of the breed.

Ed Hall

Chairman, Irish Setter Breed Clubs Joint Health Coordinators Group

Feb 2012

 

Tuesday, June 28, 2016 - 19:09
Archiving DNA

Archiving DNA – Why Do It And What Does It Entail?

An increasing number of breed clubs are establishing DNA banks, or archives, to store DNA from dogs that are alive today for the benefit of the breed in the future. The Canine Genetics group at the Animal Health Trust offers  DNA Archiving facilities for Irish Setters. This article answers frequently asked questions about what a DNA archive is, what the benefits are and what information needs to accompany each DNA sample for the archive to be of maximum benefit.

What is a DNA Archive?

A DNA archive, otherwise known as a DNA bank, is a collection of DNA samples from different individuals that are to be stored for an indefinite period of time. The DNA is collected with a view to using it for future research purposes, as and when it is needed. More information about what the DNA can be used for is included below in ‘What can the stored DNA be used for?’

Which dogs should have their DNA stored?

DNA from any dogs can be stored, but it is especially useful to store DNA from dogs that have or are likely to be bred from and dogs that are known to be closely related to dogs that are affected with inherited conditions.

What Can The Stored DNA Be Used For?

The stored DNA can be used for a variety of purposes. One important use for the DNA is to identify mutations responsible for inherited diseases; these diseases can be ones that are known about today or ones that might arise in the future. During a research project where a causal mutation is being sought it is often useful to analyse the DNA from affected dogs and from their parents and grandparents. For late onset conditions parents and grandparents may no longer be alive by the time an affected dog is identified, but if the DNA from those dogs had been stored then it will be available to use long after the dogs have passed away. The AHT has developed at least one DNA test that was made possible by the analysis of DNA from dogs that had been stored for almost 10 years.

Stored DNA can also be used for general breeds studies, such as estimating the genetic diversity of the breed or the frequency of disease mutations in the general population.

Who Owns The DNA That Is Stored?

When owners submit a sample to the AHT they will be required to agree that the sample becomes the property of the AHT. The AHT will periodically share samples with bona fide researchers at other institutions as part of collaborative projects aimed at improving the health and welfare of dogs.

How can the DNA be collected?

Ideally the DNA would be collected as a blood sample (~5mls) preserved in EDTA. However, in the UK, the Home Office has strict regulations restricting the drawing of blood for non-veterinary procedures, so owners should discuss this with their vet before requesting a blood sample solely for the purposes of DNA archiving. If a dog is having blood drawn for a veterinary procedure then a vet is permitted to draw a little bit extra for research purposes (which is how DNA archiving is classified) or to use any residual blood sample that is left over from the veterinary procedure.

Alternatively the DNA can be collected using buccal (cheek) swabs. Providing the instructions are closely adhered to it is usual to collect enough high-quality DNA for most research purposes.

What information needs to accompany each DNA sample?

The more information that accompanies each DNA sample the more useful it is likely to be. A DNA sample from a dog for which there is little information is unlikely to be of much use. It is usual to provide details such as the dog’s name, breed, KC registration number, D.O.B., coat colour. You will also be asked for a copy of the dog’s 5-generation pedigree and for any information about the health of the dog. Keeping the archive updated with any significant health changes is VERY IMPORTANT. For example, if we want to use a particular dog’s DNA sample to study a specific inherited condition we need to know the dogs’ clinical status with regard to that disease – in other words, we need to know if the dog is affected or unaffected or unknown. If a dog whose DNA is stored unfortunately develops any serious health condition it is very important that the owner informs the AHT so the dog’s record is updated. Likewise, if the dog enjoys a healthy happy life and lives to be a ripe old age that is important information too! You do not need to submit a new DNA sample when you update the archive.

Both dog and owner information is kept in the strictest confidence, although the AHT might, periodically, distribute a list of the names of dogs whose DNA is stored to breed club representatives, for the purposes of sample monitoring. Only the names of dogs will be distributed and no other information will be included.

What does it cost to store DNA?

This varies. If the DNA is to be stored for research into a particular inherited condition, or for any other purposes for which funding has already been obtained, then the DNA can currently be stored free of charge. If the DNA is to be stored for unspecified, future purposes then the AHT asks for a donation of £5 per sample to help cover administrative costs. Details of how to submit a sample can be obtained by emailing canine [dot] geneticsataht [dot] org [dot] uk. This is also the email to use to inform the AHT about a change in your dog’s health.

Dr Cathryn Mellersh

Animal Health Trust

Click on the link below to reach the Animal Health Trust website:

www.aht.org.uk

Friday, June 10, 2016 - 21:21
Bloat

 

Bloat is a very serious health risk for many dogs, but especially large and giant breeds. Unfortunately the Irish Setter is one of the breeds that is particularly prone, and it is really important that owners are aware of and can recognise the signs so they can contact their vet immediately, day or night, if they think their Setter is blowing.  Getting your Setter to the vet immediately is crucial as time is absolutely vital;  don’t wait to “see what happens” and certainly don’t wait to see if your dog is better in the morning. Bloat is an emergency and all vets are aware of the importance of seeing the dog immediately.

This is a complex disease which is likely to be the result of environmental influences including diet and stress as well as familial susceptability.  Whilst it is not clear whether it is truly inherited, or whether it is a reflection of inherited conformational characteristics, it does mean that the chances of your puppy getting bloat increase if there have been other cases of bloat in the family.

What names is bloat known by?

  • Bloat
  • Dilatation-Volvulus
  • Distension
  • Gastric Dilatation
  • Gastric Torsion
  • Gastric Volvulus
  • GDV
  • Torsion
  • Tympani

These are all names that may be used to describe bloat and are often used interchangeably by owners as they are all stages of Gastric Dilatation-Volvulus (GDV)

What is Bloat?

  • Bloat is an unusual accumulation of gas and fluids in the stomach which is not passed normally through belching or flatulence and which causes abnormal swelling.
  • The gas that accumulates is largely swallowed air, and does not arise by fermentation in the stomach. The stomach becomes like a drum (tympani).
  • A dilatation is where the stomach is distended but is not twisted.
  • Eventually the stomach will not only just dilate but also rotate fully on its long axis, causing a torsion/volvulus.

A bloated stomach affects several other organs in the abdomen by putting pressure on them and by affecting the veins which means blood cannot return to the heart as it should.  The spleen may also become twisted.  As the stomach gets bigger it puts pressure on the chest cavity which makes it difficult for the dog to breathe.  If the stomach twists it can totally or partially block the exit to and from the stomach trapping gas, food and water in the stomach.  The stomach's own blood supply can be comprised leading to death of its wall, rupture and peritonitis.  This combination can quickly lead to death as organ failure, low blood pressure and shock all set in.

Symptoms

Not all dogs get all the symptoms so don’t wait to see them all: 

Phase 1:

The stomach is dilating but may not have twisted.

  • Not acting as normal
  • Restlessness and anxiety
  • May ask to go outside in the middle of the night
  • Swelling of the stomach- feels like a drum and may resonate when tapped gently
  • Excessive salivation
  • Pacing
  • Stretching
  • Looking at abdomen
  • Whining
  • Unproductive retching: attempts to vomit but not bringing up food; sometimes a white, frothy saliva is brought up

Phase 2:

The stomach has twisted and shock is starting to set in

  • Abdominal pain
  • Very restless
  • Whining and groaning
  • Pacing
  • Unable to settle
  • Stretching
  • Looking at the abdomen
  • Abdomen is enlarged and tight
  • Difficulty in breathing
  • Panting
  • May stand with front legs apart and head down
  • Trying to vomit more often
  • Heart rate increased to 80 – 120 beats per minute
  •  Dark red gums

 Phase 3:

Shock has developed and death is imminent

  • Shallow breathing
  • White or blue gums
  • Weak pulse
  • Abdomen is very enlarged
  • Heart rate over 120 beats per minute
  • Collapse

Measures thought to reduce the risk of bloat.

  • Feeding two or three smaller meals a day rather than one large one
  • Avoiding exercise for a couple of hours before and after feeding
  • Limiting the amount of water available immediately before and after eating
  • Feeding a good quality diet
  • Not feeding a meal that swells in contact with water
  • If you are changing diet then doing it gradually over a period of a few days
  • Making meal times as stress free as possible
  • Making sure your Setter is not underweight
  • If you have more than one dog and there is a race to finish eating then it is best to separate them

It used to be thought that feeding your dog from a raised bowl helped to prevent bloat but more recent research shows this is not the case.

Treatment

Urgent veterinary attention should be sought if you think your Setter is bloated.

Emergency treatment will comprise intravenous fluids to compensate for shock and decompression of the stomach by a stomach tube. Surgery to correct any torsion will be performed as soon as the dog is stable.

 General Information

  • Dogs that bloat are generally over 2 years old and the chance increases by the time they are about 4 but this is not always the case. Puppies have been known to bloat and, occasionally, dogs over 10 will bloat.
  • Larger deeper chested dogs seem to be most at risk.
  • There may be a history of digestive upsets, but this in not always the case.
  • Having a first degree relative (i.e. parent, sibling) with a history of bloat seems to increase the chances of bloat.
  • There may be a familial association with other dogs who bloat but this is not always the case.
  • Stress is a known factor and "happy dogs" are considered to be less at risk.

Prognosis and prevention of recurrence

Bloat is a serious condition, with a mortality rate of approximately 30% even with prompt veterinary treatment, although the prognosis is worsened if treatment is delayed.

Dogs that survive an episode of bloat are at increased risk of repeat episodes. The risk can be significantly reduced by performance of a surgical procedure, called a gastropexy, that fixes the stomach's position and prevents it from twisting, although it will not prevent further episodes of dilatation. This procedure is performed either at the time of the first surgery, or at a later date if a patient is treated with fluids and decompression initially. It is important that you request that your vet perform this surgery which may be performed. 

You may be given the option of laparoscopic gastropexy. Commonly called keyhole surgery it is minimally invasive, faster and has better healing results. 

The x rays below, courtesy of the vet who took them, shows the before and after scenario of an Irish setter which bloated. That on the left clearly shows the distended stomach which is the large black mass to the right on the x ray. That on the right was taken after the stomach was decompressed. In this case the stomach hadn't twisted and a laparoscopic gastropexy was carried out a few days later.

bloat x ray

Bloat surveys and research from Purdue University

Raghavan, M.; Glickman, N.W.; Glickman, L.T. The effect of ingredients in dry dog foods on the risk of gastric dilatation-volvulus in dogs. Journal of the American Animal Hospital Association, 42: 28-36, January/February 2006.

Glickman, L., Glickman, N., et al. Non-dietary risk factors for gastric dilatation-volvulus in 11 large and giant breed dogs. Journal of the American Veterinary Medical Association, 217(10):1492-1499, 2000.

Glickman, L.T., Glickman, N.W., Schellenberg, D.B., Raghavan, M., Lee, T.L. Incidence of and breed-related risk factors for gastric dilatation-volvulus in dogs. Journal of the American Veterinary Medical Association, 216(1):40-45, 2000

Schellenberg, D., Yi, Q., Glickman, N.W., Glickman, L.T. Influence of thoracic conformation and genetics on the risk of gastric dilatation-volvulus in Irish setters. Journal of the American Animal Hospital Association, 34(1):64-73, 1998.

Glickman, L.T.; Lantz, G.C.; Schellenberg, D.B; Glickman, N.W. A prospective study of survival and recurrence following the acute gastric dilatation-volvulus syndrome in 136 dogs. Journal of the American Animal Hospital Association, 34(3):253-9, 1998

Schaible, R.H.; Ziech, J.; Glickman, N.W.; Schellenberg, D.; Yi, Q.; Glickman, L.T. Predisposition to gastric dilatation-volvulus in relation to genetics of thoracic conformation in Irish Setters. Journal of the American Animal Hospital Association, 33(5):379-83, 1997

Glickman, L.T.; Glickman, N.W.; Perez, C.M.; Schellenberg, D.S.; Lantz, G.C. Analysis of risk factors for gastric dilatation and dilatation-volvulus in dogs. Journal of Veterinary Medical Association 204(9):1465-71, 1994

Raghavan, M.; Glickman, N.W.; Glickman, L.T. The effect of ingredients in dry dog foods on the risk of gastric dilatation-volvulus in dogs. Journal of the American Animal Hospital Association, 42: 28-36, January/February 2006.Bloat surveys and research from Purdue University

Glickman, L., Glickman, N., et al. Non-dietary risk factors for gastric dilatation-volvulus in 11 large and giant breed dogs. Journal of the American Veterinary Medical Association, 217(10):1492-1499, 2000.

Glickman, L.T., Glickman, N.W., Schellenberg, D.B., Raghavan, M., Lee, T.L. Incidence of and breed-related risk factors for gastric dilatation-volvulus in dogs. Journal of the American Veterinary Medical Association, 216(1):40-45, 2000

Schellenberg, D., Yi, Q., Glickman, N.W., Glickman, L.T. Influence of thoracic conformation and genetics on the risk of gastric dilatation-volvulus in Irish setters. Journal of the American Animal Hospital Association, 34(1):64-73, 1998.

Glickman, L.T.; Lantz, G.C.; Schellenberg, D.B; Glickman, N.W. A prospective study of survival and recurrence following the acute gastric dilatation-volvulus syndrome in 136 dogs. Journal of the American Animal Hospital Association, 34(3):253-9, 1998

Schaible, R.H.; Ziech, J.; Glickman, N.W.; Schellenberg, D.; Yi, Q.; Glickman, L.T. Predisposition to gastric dilatation-volvulus in relation to genetics of thoracic conformation in Irish Setters. Journal of the American Animal Hospital Association, 33(5):379-83, 1997

Glickman, L.T.; Glickman, N.W.; Perez, C.M.; Schellenberg, D.S.; Lantz, G.C. Analysis of risk factors for gastric dilatation and dilatation-volvulus in dogs. Journal of Veterinary Medical Association 204(9):1465-71, 1994

Monday, February 13, 2017 - 23:57
Breed Health Committee

Breed Health Committee

In the last few years, the health of pure-bred dogs has been in the spotlight and the UK Kennel Club requested that each recognised breed appoint a health committee to examine health issues in the breed. The committee was set up with health representatives from the eight Irish Setter Breed Clubs in the United Kingdom. Rita Bryden, as KC Breed Liaison Officer also attends and participates in discussions and we have an independent Chairman, Professor Edward J Hall MA, Vet MB, PhD, DipECVIM-CA, MRCVS

Ed Hall is Professor of Small Animal Internal Medicine at the University of Bristol Veterinary School, where he is Head of the Division of Companion Animal Studies. A Cambridge graduate, he undertook clinical and research training in Philadelphia and Liverpool, and is a Diplomate of the ECVIM-CA. In his PhD, he investigated gluten-sensitive enteropathy in Irish setters with great assistance from Mrs Jean Quinn and other breeders. This is where his passion for the breed developed.

He is currently a Past President of the British Small Animal Veterinary Association, and has written over 70 scientific papers and numerous book chapters on canine small intestinal diseases. He has clinical and research interests in small animal gastroenterology, in particular inflammatory bowel disease, and sees referral patients with GI problems. He gave evidence to the APGAW and Bateson enquiries into pedigree dog breeding. He owns an Irish Setter, “Fin”.

Health topics of interest and importance to Irish Setter breeders and owners are discussed and one of the first actions of the group was to organise an online survey for all Irish Setter owners to “obtain a snapshot of the state of Irish setter health with respect to known and suspected inherited disease. They also wish to identify those conditions that setter owners believe have the most serious impact on the health and welfare of their dogs, so that future initiatives can be targeted at the most important conditions.” This survey is now closed and the information has been analysed and presented to the committee.  Ed Hall has written a report which can be read on: http://irishsetterhealth.info/content/2011-breed-health-survey.

The committee support Cathryn Mellersh from AHT in the genetic investigation of bloat in the Irish Setter and believe it is the first investigation to consider the probable genetic component.

If you have concerns about any aspect of the health of this breed, or your Irish Setter, which you consider should be brought to the attention of the Health Committee or require more information on any health matter, please feel free to contact any breed club health representative or SEISC Health Representative Meg Webb megwebb1ataol [dot] com. You do not need to be a member of any club to do so.

Breed Health Coordinator:

Professor Ed Hall, Department of Clinical Veterinary Science, University of Bristol

 

Club Health Representatives:

Belfast and District Irish Setter Club: Mrs Dorothy Park

Irish Setter Association, England: Miss Rosie Dudley

Irish Setter Breeders Club: Mrs Lynne Dale  

Irish Setter Club of Scotland: Ms Magi Henderson  

Irish Setter Club of Wales: Mr Hefin Jones 

Midland Irish Setter Society: Mrs Lynne Sketchley

North East of England Irish Setter Club: Mr Brian McAvoy

South of England Irish Setter Club: Mrs Meg Webb  

Kennel Club Breed Liaison Council Representative: Mrs Rita Bryden

 

 

Saturday, October 1, 2016 - 14:48
Canine herpesvirus

Canine herpesvirus and puppies.

Canine herpesvirus (CHV) is specific to domesticated and wild dogs. As with other herpesviruses, CHV becomes latent and is carried by the affected individual for life, though they may not show any clinical signs. The infection may flare up and become a clinical problem during periods of stress or immunosuppression.

Dogs are infected in one of the following ways:

-       In fetuses, across the dam’s placenta

-       In new born pups through contact with the birth canal

-       During mating

-       Via the respiratory route

CHV is a virus that grows best at a temperature slightly below the normal core temperature of a dog, meaning that it is usually restricted to the nasal passages where the temperature is lower. If a puppy is chilled or has few maternal antibodies, it is more susceptible to widespread infection.

A puppy may acquire protective antibodies against CHV from the mother across the placenta as well as in the colostrum. The bitch will only have antibodies to pass on if she has either been exposed to the virus or if she has been vaccinated recently against it 

Vaccination has not been shown to give lasting immunity; live vaccines might be more effective, but could result in a lifelong carrier status.

If a fetus is exposed while in utero, the effects will depend upon the stage of pregnancy – those infected earlier are unlikely to survive to term, though pups infected later may also be aborted, mummified, stillborn, premature or born weak. Some pups may be born apparently normal but succumb within 9 days of birth.

If a newborn pup is exposed to CHV, the virus first reproduces in the nose and the tonsils; then it travels through the blood and spreads to other organs. The virus can affect blood clotting, causing bleeding problems within the organs.

These pups infected after birth may become acutely affected with a fatal illness between the age of 1 and 3 weeks. Affected pups often fail to suckle and may cry persistently. Some may have a nasal discharge and some develop pinpoint bleeding on their gums.

Puppies that have antibodies from the dam are not completely protected, but are less likely to develop a severe infection. A bitch may give birth to a severely affected litter and then, because she develops antibodies against CHV, may have normal litters subsequently.

Pups infected after 3 weeks old are less likely to have a severe infection, but instead show milder signs of upper respiratory tract infection and sometimes genital lesions.

Infected dams seldom show any signs of a problem until they lose a litter.

Prevention is currently largely based around management, such as keeping puppies warm to reduce the likelihood of systemic infection. Routine testing is not carried out, even when pups are lost, so there are no concrete data on how many puppies are lost to CHV every year.

Currently the main tests available for CHV are:

  1. Blood tests for antibodies (‘serology’)
  2. Viral isolation

Virology simply proves exposure to the virus but not whether it is a clinical problem; viral isolation requires live virus to grow in cell culture.

PCR (polymerase chain reaction) is a technique that can be used to detect CHV DNA. This has been done on tissue samples but, in theory, could be applied to nasal swabs from live dogs.

A new study being carried out by Ben Harris at The Queen’s Veterinary School Hospital, Cambridge University, aims to investigate this possibility: Having received funding from the Kennel Club Charitable Trust and endorsement from the Irish Setter Joint Breed Health Committee, Ben and his colleagues will be inviting owners of Irish Setters to submit swabs from dams and puppies to look for CHV DNA. The study is restricted to this breed to reduce complicating factors such as whelping problems as much as possible.

 Article supplied by Ed Hall our Breed Health Co ordinator.

Update on Ben's study  January 2013

Ben thanks all breeders who supplied DNA samples. He is is now working with these samples but, unfortunately, it is taking longer than anticipated to get results.

Monday, January 4, 2016 - 17:58
Canine Leukocyte Adhesion Deficiency (CLAD)

Canine Leukocyte Adhesion Deficiency (CLAD) is an inherited immunodeficiency condition which affects the white blood cells ability to fight infection.  Affected puppies show infections from a very early age, often with umbilical (navel) infections from birth with other recurring infections of skin, mouth and sores that do not heal.  There may be tonsillitis, pneumonia as well as joint and bone problems. These infections usually respond well to antibiotics but, as soon as they are stopped, the infections return. Inflammation of the gums occurs when the pups are about 2 months old along with swollen jaws. Some joints become swollen, in some cases so much so that movement is difficult. Although it affects different pups to varying degrees CLAD is inevitably fatal.

CLAD is identical to human LAD and bovine LAD and this helped research as it was known that the mode of inheritance is by a single recessive mutation in a gene that is responsible for controlling a vital part of the function of the white blood cells.  This means that puppies have to inherit two copies of the mutant gene, one from its dam and one from its sire.  Research on the disease was carried out in England and Scandinavia, where the carrier rate was close to 12%. That meant that 12% of the tested population of Irish Setters was not suffering from and never would suffer from the disease but could pass on the mutant gene to its pups. Affected dogs are likely to die before reaching breeding age, but mating of two carriers will produce, on average, one affected, two carriers and one clear progeny for every 4 pups.

Irish Setters now have a DNA test for CLAD which has, over time, allowed breeders to apparently eliminate the problem from the breed in UK.  No Irish setter that has been tested for CLAD since 2007 has been found to be either a carrier or affected.  Unless a case is made to the KC for exceptional circumstances then no puppy can be registered with the Kennel Club unless it is either hereditarily clear or tested clear.

It is important that if you are considering buying a puppy you check with the breeder to confirm that both the sire and the dam have been DNA tested clear or are hereditarily clear.  If not, then the puppy himself needs to have been DNA tested.  If not, we recommend you do not buy the puppy.  The information is clearly shown on the puppy’s Kennel Club registration papers.

Follow the link to see the list of Irish Setters tested for CLAD in UK, however  it does not show the Irish that are hereditarily clear of the condition.

www.thekennelclub.org.uk/item/1142

We have just learnt that an Irish Setter has been imported to UK in 2016 and is confirmed as being a CLAD carrier and we believe there is a second imported dog that is also a CLAD carrier.  Neither of these dogs appear on the Kennel Club register of dogs DNA tested for CLAD. In UK it is very easy to become complacent and believe this problem no longer exists but it obviously does. Responsible breeders do not want CLAD to become a problem in the breed again so please check that your puppy or potential sire is CLAD clear.

References

- Immune Deficiency in the Irish Setter (Granulocytophy) SEISC Southern Aspect 1990/1991
  Dr Gunilla Trowald-Wigh

- Irish Setter Club of Wales Memorial Lecture 22/2/98
  Speaker Dr Gunilla Trowald- Wigh, veterinary clinician from Uppsala University

- Leucocyte adhesion protein deficiency in Irish Setter dogs 1999
  Dr Gunilla  Trowald –Wigh, Lena Hakansson, Anders Johannisson, Leif Norrgren and Carl Hard af Segerrstad

- Canine Leucocyte Adhesion deficiency (CLAD) in the Irish Setter 2000
  Dr Jeff Sampson KC Canine Genetics Co ordinator

Monday, October 10, 2016 - 23:52
Cryptorchidism

When dog puppies are born their testicles have not descended into the scrotum.  Usually by the time they are 8 weeks the testicles can be clearly felt by a vet or an experienced breeder but may take a few more weeks to descend fully.  However, occasionally, one or both do not descend but are retained inside the body; this is cryptorchidism.

Cryptorchidism is believed to be inherited, and affected dogs cannot be shown.

Surgical removal of the undescended testicle(s) is recommended as the retained testicle can become cancerous; the descended testicle should also be removed to stop unwanted breeding. Replacement with prosthetic testicles is practised in some countries but is considered unethical in the UK.

Friday, June 10, 2016 - 21:25
Dr Jerold Bell and RCD4

Late‐onset (rcd‐4) progressive retinal atrophy in Irish Setters: Where are we, and where do we go from here?

Jerold S Bell DVM Clinical Associate Professor of Genetics Tufts Cummings School of Veterinary Medicine

We now know from Dr. Cathryn Mellersh at the Animal Health Trust in the UK that there are at least three different inherited progressive retinal atrophy disorders in the breed; and early onset rcd‐1, a still undefined middle‐age onset PRA, and late‐onset rcd‐4 PRA.

The AHT reports a 30‐40% carrier rate worldwide for the defective gene in Irish Setters. The rcd‐4 gene that causes Irish Setter PRA is one that similarly causes autosomal recessive late‐onset progressive retinal atrophy in man. It is the same genetic mutation causing late‐onset rcd‐4 PRA in Gordon Setters. Irish Setter owners will receive affected test results for dogs who have no observable vision problems. This is because this is a late‐onset disorder. It was originally reported that the average onset of this form of PRA was around 10 years of age. This is the average age of Irish Setters recognized with visual impairment that test affected with rcd‐4 PRA. The actual age of onset of Irish Setter rcd‐4 PRA is possibly much older; with many affected dogs never reaching the age of onset of visual impairment. In addition, owners of very old Irish Setters with visual impairment may believe that it is “normal” for old dogs to not see well, and do not pursue a diagnosis of PRA. The fact of the matter is that there is a range of age of onset for the clinical signs of Irish Setter rcd‐4 PRA where some may slowly lose their vision at younger than 10 years of age, and some many never show clinical signs of a vision problem.

Dr. Cathryn Mellersh at the AHT is currently searching for the defective gene causing the middle‐age onset form of PRA in the breed, and is interested in cheek swab samples from affected dogs and their close relatives.

Because there is more than one form of PRA in the breed, and because Irish Setters can also have other disorders of the eyelids, cornea, lens, and retina, the rcd‐4 genetic test does not replace the need for annual CERF examinations of the eyes.

The most important thing that we need to do about rcd‐4 PRA is to not devastate the Irish Setter gene pool with widespread spaying/neutering, and the removing of quality dogs from breeding. Aside from the loss of quality dogs, the breed cannot withstand the removal of 30% to 40% of breeding dogs from the gene pool and maintain breed genetic diversity. This is not the only direct gene test that is available for the breed. We must all recognize that the proper use of genetic tests for recessive disease is to breed quality carrier dogs to quality clear dogs, and replace the carrier parent with a clear‐testing offspring that is of equal or better quality.

If a quality dog that you determine deserves to be bred tests as a carrier, you certainly can and should breed the dog. You must make a decision counter to the emotional reaction when you received the carrier test result. Making a decision to not breed a quality dog based on a single testable gene is not appropriate. As long as carriers are not bred to carriers, no affected dogs will be produced. This is a testable and controllable gene. By dealing with rcd‐4 PRA in an objective and informed manner, we can continue to produce quality Irish Setters and work away from this single gene hereditary disorder. The goal is to slowly decrease the carrier frequency in the population and slowly replace carrier breeding stock with normal offspring. This will take many generations. A genetic test should not alter WHO gets bred, only WHO the dog gets BRED TO.

Lastly, it is important to remember that this is about the dogs. You belong to a community that loves Irish Setters. No one wants to produce carrier or affected dogs. The stigmatizing of breeders and quality dogs due to carrier status is an old, outdated and an unacceptable practice. We need to be able to raise the level of conversation to constructive communication.

In UK the DNA test results are automatically published quarterly by the Kennel Club in the Breed Record Supplement and also monthly on their website:
http://www.thekennelclub.org.uk/health/health-information-and-resources/...

With several genetic tests available and more on the way, we know that there are no “perfect” dogs. By working together you can improve your breeding attitudes, your breeding programs, and the overall health of the Irish Setter breed.

 

 

Dr Bell’s original article has been slightly modified, with his permission, to reflect the fact that the results for all KC registered dogs are automatically published by The Kennel Club. This modification is in italics. The rest of the article is as written by Dr Bell.

Monday, April 25, 2016 - 09:27
Entropion

A condition in which the edge of one or both eyelids turns inwards to the eyeball; usually it is the bottom eyelid that turns inwards. The condition causes the eyelashes and outer lid hair to irritate and inflame the cornea. It is very painful and in severe cases corneal ulcers and rupture of the eyeball can occur.  If seen in puppies it is likely to be inherited but may have other causes in an older dog.  Sometimes only one eye will be affected but then the other may turn later.

 

Symptoms: Continual watering of the eyes.  Eyes looking red.  Affected dog may often rub its eye against furniture or your leg.  You may also see for yourself that the lid is turning inwards.

Action:   Consult your vet as it may require surgery.  Also tell your breeder, as affected dogs should not be used for breeding and, ideally, neither should their parents. Your vet should also notify the Kennel Club that they have performed a cosmetic procedure to correct the defect.

 

 Ectropion is the opposite of Entropion and the eyelid turns out.

 

 

 

Monday, January 4, 2016 - 18:00
Epilepsy/Fits/Seizures

Epilepsy means repeated seizures due to abnormal electrical activity in the brain and is caused by an abnormality in the brain itself. However a fitting dog is not always an epileptic dog. Fitting or seizures can be caused by a variety of disorders (including poisons, metabolic disorders and brain tumours), with epilepsy being only one of them. Epilepsy is recognised as an inherited condition (idiopathic epilepsy) in some breeds, and typically signs start between 6 months and 3 years of age.

Signs: Fits occurring during exercise are unlikely to be epilepsy. Epileptic fits usually occur when the dog is quiet and even when rising from sleep: the dog collapses, is unconscious and unresponsive, thrashes it’s legs, often froths at the mouth and can empty its bladder and bowels.  It may also scream and moan loudly whilst fitting.

Action:  Try to prevent self-injury to your pet, but do NOT attempt to pull its tongue out and never put your face near to a fitting dog; you may be bitten as your dog will not recognise you whilst he is fitting. Some restraint may be necessary, but letting your dog just lie on the floor is probably best, so do not try and move him unless he is in danger.   Do not give stimulants.  As he recovers he will recognise your voice, so talk to him all the time in a reassuring manner.  Time how long the fit lasts and when he has recovered contact your vet; most fits last less than a minute - it just seems much longer. But if a fit does lasts for more than ten minutes or clusters of fits occur in rapid succession seek veterinary attention immediately.

On recovery, remove excess saliva and put the dog in a darkened room, keep quiet and warm.  Keep a detailed record of your dog’s fits, and let the Breeder know once the diagnosis has been confirmed by your vet. 

Further information:

The Canine Epilepsy Support Group is a small charity set up in 1991 to offer practical and sympathetic support to the owners of epileptic pets, and the opportunity to talk to people who have learnt to live happily with an epileptic pet.

Their Advisory Panel includes Mr Francis Hunter, VetFFHom, MRCVS, Adviser on Homoeopathy,  Mrs Sylvia Gulbenkian, BVetMed, MRCVS, Adviser on Acupuncture, and Professor Steve Dean, BVetMed, DVR, MRCVS, Adviser on Veterinary Legislation.  The group also works closely with two Herbalists and a Holistic Therapist and they have set out to offer alternative options in addition to prescribed medication and veterinary care.

Their aim is to help owners achieve normal, happy lives for their pets and are here to help and support you and your pet.

Please contact:  Anne Morley 01903 784263 or 785327

http://www.canineepilepsysupport.co.uk

The Royal Veterinary College (RVC) runs an epilepsy clinic and if you use the link to the clinic you will find more information:

www.rvc.ac.uk/epilepsy

The following link gives a more detailed description of epilepsy and its phases:

www.rvc.ac.uk/epilepsy/Epilepsy.cfm

The Canine Epilepsy website is a collaborative project provided by Vetoquinol UK and Vetstream. The site contains information on canine epilepsy for both veterinary surgeons and owners of dogs that have been diagnosed with epilepsy.

http://www.canineepilepsy.co.uk

The Phyllis Croft Foundation for Canine Epilepsy (PCFCE) was founded to bring comfort,support and information to the owners of epileptic dogs.

http://www.pcfce.org.uk/

Monday, January 4, 2016 - 18:03
Health Review 2012

Bloat

2012 has been an important year for Irish Setter Breeders as all UK Breed Clubs along with the Irish Red Setter Rescue Charitable Trust have raised the money to fund phase 1 of the genetic investigation of bloat in Irish Setters by Cathryn Mellersh of AHT. Breed surveys have shown that the incidence of bloat in the breed is significant but we are aware it is likely a truly complex disease, having both genetic and environmental components.  The investigation has been divided into two parts and we are currently waiting for correspondence from AHT so that data can be collected and the estimation of heritability be evaluated.  If heritability is significant then AHT will proceed to the second part of the study, which will comprise a genetic investigation.  Owners/breeders of all dogs registered with the Kennel Club in the last ten years will be contacted by AHT and we hope that there will be a sufficient response to the request for details of individual dogs. The initial interest in the research certainly suggests this will happen and everyone will be encouraged to reply.

http://www.irishsetterhealth.info/content/genetic-investigation-bloat

CHV

During the year Ben Harris, who was at The Queen’s Veterinary School Hospital, Cambridge University, collected DNA samples from dams and their puppies for research into a technique, PCR (polymerase chain reaction), that can be used to detect Canine Herpes Virus. This technique has been used to detect CHV DNA on tissue samples already but, in theory, could be applied to nasal swabs from live dogs. Ben’s study is investigating this possibility.  Breeders responded positively to Ben’s request for swabs and he is now carrying out his research and will be writing up the results. We wait his paper with interest.

http://www.irishsetterhealth.info/content/canine-herpesvirus

 

PRA rcd4

Last year AHT developed a DNA test for PRA rcd4 and testing is continuing with all results of KC registered dogs being published on their website and updated monthly. Over 400 dogs are clear, just over 300 are carriers and about 75 affected. Our sister site www.seisc.co.uk also published results from around the world, mainly Europe, providing we were sent copies of the results from the owners. The joint breed clubs health committee is monitoring the situation and it appears that breeders who are members of breed clubs are now ensuring no further genetically affected Irish Setters are being born. Unfortunately some breeders are still mating stock that has not been tested. The committee published a statement on the control of this mutation in the breed advising that as there is a high prevalence of carriers that in order to maintain genetic diversity in the breed, carrier and affected dogs can be used, but only to a clear mate. The principle of the guidelines is that no dog should be produced that will develop PRA rcd4 and become blind.

http://www.irishsetterhealth.info/content/pra-rcd4

Unexpected sudden death

During the year there were reports of a very small number of cases of unexpected sudden death in Irish Setters due to internal bleeding. Dr Ed Hall, our Breed Health Representative, has advised us that post mortem examinations will be essential to identify the prevalence of this emerging problem so that its cause can be investigated with the ultimate aim of finding a solution.

http://www.irishsetterhealth.info/content/saying-goodbye

Health Survey

Early in the year we published the results of the Health Survey that was carried out in 2011 and we are aiming to carry out another survey in 2013 so that we can continue to monitor the health of the breed.

http://www.irishsetterhealth.info/content/2011-breed-health-survey

 

 

 

 

 

Sunday, May 1, 2016 - 19:29
Health Review 2013

Bloat.

The survey took longer to materialise than we originally hoped and it was launched in October. Letters were sent out by The Kennel Club to the owners or breeders of all Irish Setters born between 2000 and 2012. Owners were asked to take certain measurements of their dog and give information about whether or not their dog bloated.  The opportunity was taken to widen the scope of questions asked about other health conditions and because of this the Joint Breed Clubs Health Committee decided to leave its proposed health survey until later.  The survey closed at the end of November and we received the following from AHT:

We have surveys for 1956 dogs from 1098 owners. 1703 dogs are currently alive and 251 are dead: 886 males and 1068 females.  This represents a response rate of roughly 15%. The prevalence of bloat among the survey respondents is approximately 13%. This includes bloating without GDV i.e. resolved without surgery or death).  It is hopeful this amount of data should be sufficient  to detect heritability.  We hopefully expect to have some more news halfway through 2014.

CHV

During 2012 Ben Harris, who was at The Queen's Veterinary School Hospital, Cambridge University, collected DNA samples from dams and their puppies for research into a technique, PCR (polymerase chain reaction) that can be used to detect Canine Herpes Virus.  This technique has been used on tissue samples and, in theory, could be applied to nasal swabs from live dogs. Ben's study is investigating this possibility.  Breeders responded positively to his request for swabs and we await his paper with interest.  Unfortunately the data has not yet been published.

RCD4

The DNA test became available in October 2011 and each month the KC publishes the results of all KC registered dogs, whether clear, carrier or affected. This enables breeeders to use combinations of parents that cannot produce genetically affected puppies which may go blind in later life. By the end of 2013 about 600 dogs had been tested as clear, with about 400 carriers and 84 affecteds.  At the end of 2012, the first full year of the test, the numbers were about 400, 300 and 75 respectively.  As expected the number of dogs being tested each month has dropped considerably as many dogs are tested and in many cases the hereditary status is known.  Unfortunately there are still breeders who are using untested stock but it appears that those who are connected with showing or who are members of breed clubs are not in this group.  The advice still remains to test all stock before mating or know the  RCD4 status and the principle is that no dog should be produced that may develop RCD4 and go blind.  The Joint Breed Clubs Health Committee will continue to monitor results and litters.

http://www.irishsetterhealth.co.uk/content/pra-rcd4

Epilepsy

SEISC and ISBC (Irish Setters Breeders'Club), with the support of the Joint Breed Clubs Health Committee, are actively supporting the collection of DNA for research into epilepsy in Irish Setters being carried out by Professor Hannes Lohi and his team at Helsinki University.  As blood cannot be taken in UK for research purposes without a licence, the team at Helsinki have offered to accept DNA collected by buccal swabs. The swabs are being supplied by Helsinki and we are distributing packs  which include detailed questionnaires required by Professor Lohi's team. To date we have supplied just under 100 packs, not just to epileptics but to close family members or over 7s who have not fitted. 

http://www.irishsetterhealth.info/content/epilepsy-research-helsinki-university

 

 

 

 

 

 

 

 

 

 

Friday, August 19, 2016 - 14:50
Health Review 2014

Health Review 2014

 

PRA RCD4

Irish Setters are still being tested for PRA RCD4 although the status of much of the UK breeding stock is now known. As at January 2015 no new affecteds had been identified since September 2014. However, it is very disappointing that there are some breeders who are still breeding without testing their stock when the rcd4 status is not known. The Joint Breed Clubs' Health Committee, which has been monitoring the situation, has contacted as many of these breeders as possible. It must be noted that most of these breeders are not members of Breed Clubs or those who show.

The Joint Health Group has submitted a proposal to the KC  to introduce a health control scheme for rcd4 and we are hopeful this will be in place in 2015 with a timescale to allow breeders time to test their stock before mating if necessary. It will be imperative that the status of puppies is  clearly identified before they can be registered.

 

Epilepsy

The Joint Health Group continues to support the Helsinki Project which continues to collect DNA for research into epilepsy in the breed.  Lotta Koskinen, who is a member of Hannes Lohi's team, provided an update for the Health Group's meeting at the end of last year and this can be found on this site.

 

Bloat Survey

Professor Ed Hall, our Breed Health Co-ordinator is in conversation with AHT about the survey.

 

Herpes Virus

Ben Hall, has informed Ed Hall that he will complete the analysis of the samples collected  during the coming summer.

 

PRA RCD1

In September, the Health Group issued a statement alerting breeders that a case of RCD1, confirmed by testing at AHT, had recently been reported from mainland Europe. Whilst there are no reported cases of re-occurence in the UK itself the increasing use of dogs and sperm from abroad  for breeding purposes make it important that UK owners are made aware that the mutation still exists.

The fact that there have been no reported carriers or affecteds in the UK since the open register  started in 1995 very clearly demonstrates what can be achieved by health controls and dedicated breeders.

 

Details about each of the health condtions mentioned above can be found elsewhere on the site.

 

 

 

Monday, April 25, 2016 - 09:25
Health Screening Schemes and DNA Tests Available to Irish Setter Breeders.

There are several health screening schemes which can help breeders to detect some inherited diseases and DNA tests which identify the presence or absence of disease genes.

BVA/KC Health Schemes

The Kennel Club (KC) and the British Veterinary Association (BVA) run health schemes for hip dysplasia, elbow dysplasia and eye diseases which provide scientifically based expert opinion on these inherited conditions. The KC/BVA screening programmes help conscientious breeders to identify dogs that are clinically free of such diseases so that the best possible choices for breeding programmes may be made.

Hip Dysplasia Scheme

It is only necessary to hip score once for each dog in its lifetime but only after it is a year old. 

An X-ray is required for this which must be submitted by the owners vet to a KC/BVA panel which reads it and gives individual scores for each hip.  The maximum score for each hip is 53 giving a maximum total of 106 and the lower the score the better the hips.  Each breed has a Breed Mean Score (BMS), this being the average of the total hip scores. The KC encourages breeders to only breed from dogs which have a score lower than the BMS; the BMS for Irish Setters is currently 14-15.

All results are recorded on the Kennel Club database and published in the Kennel Club Breed Records Supplement and on progeny registration certificates.

http://www.the-kennel-club.org.uk/services/public/mateselect/test/Default.aspx

Elbow Dysplasia Scheme

It is only necessary to elbow grade once for each dog in its lifetime but only after it is a year old. 

Irish Setters are not known for elbow problems and this test is rarely carried out by breeders. An X ray is required which must be submitted by the owners  vet to a KC/BVA panel which reads it and gives individual scores ranging from 0-3.

All results are recorded on the Kennel Club database and published in the Kennel

Club Breed Records Supplement and on progeny registration certificates. 

Eye Scheme

It is recommended that eye examinations should, in general, be conducted annually. Dogs are certified either affected or unaffected for the eye conditions that are known to be inherited in the breed at the time of examination. Re-examination is important as some inherited eye conditions have a later onset.  All results are recorded on the Kennel Club database and published in the Kennel Club Breed Records Supplement and on progeny registration certificates.

 

DNA Screening Schemes

Irish Setters breeders have 3 DNA tests which are available and these give precise information as to the genetic status of dogs tested with regards to specific diseases. 

Detailed information as to how these tests work can be found in the following article:

DNA Testing and Autosomal Recessive Genes.

 

PRA rcd1 (Progressive Retinal Atrophy) rod cone dysplasia 1

Since January 1st 2010 no Irish Setter can be registered with the KC unless both its parents are either tested clear or are hereditarily clear from PRA rcd1.  Most Irish Setters in UK are now hereditarily clear and these dogs do not appear on the KC monthly updated lists of dogs tested, which explains why it seems that few breeders are testing dogs. . However, the information can be found on the individual health test results of each dog and their registration papers are clearly marked, as are progeny registration certificates

CLAD (Canine Leucocyte Adhesion Deficiency)

Since 2008 no Irish Setter can be registered with the KC unless both its parents are either tested clear or are hereditarily clear from CLA, except in special circumstances. Most Irish Setters in UK are now hereditarily clear and these dogs do not appear on the KC monthly updated lists of dogs tested, which explains why it seems that few breeders are testing dogs.  However, the information can be found  on the individual health test results of each dog and their registration papers are clearly marked.  

PRA rcd4

This test became available in August 2011 and breeders are still testing their stock and, because we have such a high carrier rate in the breed, carriers are being used for breeding, which is necessary to maintain our gene pool. It is important that all stock is tested before mating, the status of any puppy is known and that no puppies are produced that that are genetically affected as they could develop rcd4 and become blind.

The results are shown on the monthly updates on the KC site providing the dog is on the KC database and Irish Setters from abroad are not usually shown. Again hereditarily clear dogs are not shown and that information can be accessed through health test results of individual dogs. 

http://www.thekennelclub.org.uk/download/11673/irishsetterpra4clears.pdf

http://www.thekennelclub.org.uk/download/11674/irishsetterpra4carriers.pdf

http://www.thekennelclub.org.uk/download/12109/irishsetterpra4affecteds.pdf

Breeders from many countries are having their Irish Setters tested and some of these results along with some UK results can be accessed on:

http://www.seisc.co.uk/pra-rcd4

This page also gives links to Clubs in Belgium, Holland and Finland which are publishing results.

Friday, June 10, 2016 - 21:28
Hip Dysplasia

Hip dysplasia (HD) is a problem that is seen across many breeds of dogs but it is more common in the giant and large breeds.  It is an abnormality of the ball and socket joint of the hip.  The hip is designed so that the ball should fit snugly into the socket allowing it to move freely but securely without causing any damage to the bones.  However, damage may occur if there is looseness in the joint because the bones are not properly formed (e.g. socket is too shallow) and the ligaments do not hold the ball in place.   The bone will become damaged and eroded which may lead to new bone formation as part of the body’s attempt to stabilise the joint.

Signs - If it is not severe, HD may not cause any obvious signs.  If there are signs it may be lameness in one, or both, back legs, or the dog may “bunny hop”, that is move both back legs together, particularly when going up stairs or steps.  There may also be stiffness or pain after resting and eventually the dog may be reluctant to move and will certainly not be able to run and play freely.  In severe cases the dog will often sit down when not moving around rather than stand.  HD usually causes signs first while a dog is still growing and may affect one or both hips. The dog may appear to grow out of the problem as it becomes skeletally mature at 1-2 years of age, only for arthritis to develop and cause pain later in life.

Diagnosis - If you believe your dog has HD the only way to confirm this is by consulting your vet who will recommend an X-ray.  The X-ray should be submitted by your vet to a KC/BVA panel which reads the X-ray and gives individual scores for each hip.  The maximum score for each hip is 53 giving a maximum total of 106 and the lower the score the better the hips.  Each breed has a Breed Mean Score (BMS), this being the average of the total hip scores. The KC encourages breeders to only breed from dogs which have a score lower than the BMS; the BMS for Irish Setters is currently 14-15.  If HD is confirmed then it is important that you let your breeder know.

Veterinary treatment - The treatment for a dog with HD will depend on the severity of the problem and its age.  In many cases drugs can relieve pain and increase mobility but sometimes surgery is required.  It is essential to follow veterinary advice which will include monitoring your pet carefully.  Regular exercise is important and swimming is excellent as it allows the dog to exercise without putting weight on its joints and comfortable, warm, dry bedding is also essential.  

Management - It is generally accepted that HD is a complex issue because environmental factors as well as several genetic factors are involved.  If the parents have poor hips then there is a higher chance of their offspring having poor hips and it is not advisable to breed from a dog with a high hip score.  However, the way your puppy is reared is vital and should your puppy have the genetic predisposition then the environmental factors may well influence the degree of severity of the problem.   One significant factor is rapid growth and rapid weight gain so it is important that your puppy has the correct food for his age; don’t be tempted to let him become fat as obesity can cause problems with the newly formed bones.  There are many puppy foods available which are designed to give your puppy the right amount of nutrition needed and your breeder should have given you a diet sheet.  Don’t be tempted to over-exercise your puppy as this increases the chances of developing hip problems.  It may be fun to watch your puppy try and get up and down the stairs or steps but again, please don’t allow him to do this too often as it can also make matters worse.   Don’t allow him to stand or walk on his back legs until he is mature and don’t encourage him to jump over obstacles.  It is also important not to let your dog jump into or out of a car with a high sill such as in some 4x4s. This sounds as though there are a lot of “don’t’s” but it will be worth taking the trouble not to let him do these things, or at least not in excess.

A hip replacement operation should only be carried when there is no alternative treatment and then only after discussion with a specialist referral vet.

Below is a link to a short video which includes xrays of normal hips and those from a dog with HD:

http://www.youtube.com/watch?v=HTwi8TRs6z8

Tuesday, June 28, 2016 - 19:05
KC/AHT BLOAT SURVEY

Final report on the Bloat survey conducted by AHT/KC

Received by Joint Breed Clubs' Health committee

 

Animal data.

Surveys were completed for 1911 unique animals, from 1091 litters (mean 1.75 animals per litter), with 412 unique sires (mean 4.64 animals per sire) and 848 unique dams (mean 2.25 animals per dam). The breakdown of animals per litter is shown in table 1.

 

# in litter

count

%

1

595

54.54%

2

293

26.86%

3

118

10.82%

4

63

5.77%

5

14

1.28%

6

4

0.37%

7

3

0.27%

8

0

0.00%

9

1

0.09%

Table 1. Distribution of animals per litter in survey.

 

Of the 1911 unique animals for which surveys were completed, 1046 were female (54.74%) and 865 were male (45.26%). Table 2 shows cross-tabulation of neuter status with sex.

 

unknown

entire

neutered

 

13 (1.2%)

733 (70.0%)

300 (28.7%)

females

7 (0.8%)

667 (77.1%)

191 (22.1%)

males

Table 2. Cross-tabulation of neuter status with sex.

 

There was a large range of year of birth (yob), from 1991 to 2013 (the year of survey), with 93% of respondent animals born between 2000 and 2011.

 

Bloat data.

1657 of 1911 animals were reported as never having experienced an episode of bloat (86.71% of animals). 254 animals (13.29%) were reported as having experienced at least one episode of bloat at the time of survey, with details on 472 incidents of bloat supplied. Table 3 shows the distribution of animals and incidents by number of episodes reported.

Of the 472 reported incidents of bloat, just over half resulted in surgery or the death of the animal (50.85%), while 230 episodes were reported to have been resolved spontaneously, by management or medication (48.73%), see table 4. 

 

episodes

animals

incidents

1

165

165

2

39

78

3

8

24

4

5

20

5+

37

185

total

254

472

Table 3. Distribution of number of reported episodes of bloat per animal.

 

Treatment / outcome

Count

Percent

Don’t know

2

0.42%

Resolved itself

83

17.58%

Managed through diet/lifestyle changes…

92

19.49%

Managed with medication

55

11.65%

Surgery

194

41.10%

Died or put to sleep

46

9.75%

Table 4. Distribution of treatment/outcome of bloat epsidodes.

 

Data on multiple cases of bloat per animal were collapsed to generate a data field indicating whether the animal had ever experienced an episode of bloat (0=no, 1=yes) with an accompanying field specifying either age in days at time of the survey (where bloat field = 0), or age in days at earliest episode (where bloat field =1).  This was repeated for bloat where treatment/outcome was specified as surgery or death/put to sleep.

Examination of the prevalence of animals experiencing bloat by yob revealed bias, with the prevalence tending to be higher in earlier yob (table 5), over the majority of the data (yob 2000-12). This bias is consistent with bloat having being more commonly observed in older animals.

The minimum age at survey for animals not having experienced bloat was 176 days, and the maximum was 5454 days (14.94 years). The mean (μ) and standard deviation (σ) age of animals at survey which had not experienced an episode of bloat was: μ= 2218.46 days, σ= 1161.05 days (6.08 years and 3.18 years respectively). The minimum age supplied for an animal experiencing its earliest episode of bloat was 61 days, and the maximum age for an animal experiencing its first episode was 4593 days (12.58 years).  The mean and standard deviation of age at earliest episode were: μ= 1755.30 days, σ= 1116.38 days (4.81 years and 3.06 years respectively).

The minimum age at survey for animals not having experienced bloat resulting in surgery or death was 176 days, and the maximum was 5454 days (14.94 years), with μ= 2222.82 days, σ= 1164.11 days (6.09 years and 3.19 years respectively).The minimum age supplied for an animal experiencing its earliest episode of bloat resulting in surgery or death was 152 days, and the maximum earliest age reported was 4593 days (12.58 years), with μ= 1959.75 days, σ= 1097.18 days (5.37 years and 3.01 years respectively). 

 

 

yob

Bloat with all treatments & outcomes

Bloat resulting in surgery or death

 

no bloat

bloat

prevalence

no bloat

bloat

prevalence

unknown

2

1

33.33%

2

1

33.33%

1991

0

2

100.00%

0

2

100.00%

1992

2

1

33.33%

3

0

0.00%

1993

1

0

0.00%

1

0

0.00%

1994

0

1

100.00%

0

1

100.00%

1995

1

1

50.00%

1

1

50.00%

1996

1

3

75.00%

3

1

25.00%

1997

2

3

60.00%

2

3

60.00%

1998

1

3

75.00%

2

2

50.00%

1999

6

2

25.00%

6

2

25.00%

2000

62

14

18.42%

62

14

18.42%

2001

79

20

20.20%

81

18

18.18%

2002

90

26

22.41%

93

23

19.83%

2003

80

27

25.23%

85

22

20.56%

2004

114

25

17.99%

120

19

13.67%

2005

150

22

12.79%

153

19

11.05%

2006

143

27

15.88%

145

25

14.71%

2007

155

17

9.88%

159

13

7.56%

2008

170

12

6.59%

173

9

4.95%

2009

148

20

11.90%

150

18

10.71%

2010

179

15

7.73%

186

8

4.12%

2011

174

6

3.33%

178

2

1.11%

2012

92

6

6.12%

95

3

3.06%

2013

5

0

0.00%

5

0

0.00%

  Table 5. Number and prevalence of animals experiencing bloat by yob

 

Genetic analysis.

A range of preliminary mixed models were run aiming to estimate the additive genetic variation in developing bloat. The proportion of phenotypic (measurable/observable) variation comprised of additive genetic variation is known as the heritability and describes the influence of genetics on the trait and how it will respond to selection.

Estimates of heritability from these preliminary models ranged from approximately 0.04 to 0.2, varying with the data and model used (data are routinely trimmed to minimise the number of classes of effect needing to be estimated; for example data may be limited to specific yob to avoid requiring the model to estimate effects of yob classes where data is scarce, such as 1991/2/3 etc, see table 5). Binary data (0/1), as used here, suffer a loss of precision in risk description in comparison to more continuous data (for example hip score ranges from 0 to 106), and this tends to lower the estimate of heritability (methods of adjustment are available). Thus, normally we might expect the true heritability to be higher than the estimates quoted above.

However, it was noted that the estimated effects of age from the analysis were extremely large, particularly when yob was also included in the model, and ran counter to previous reports (i.e. the models estimated that risk of bloat decreased as animals got older).  This is a worrying observation, and is consistent with another bias in this data; that there appeared to be a higher prevalence of bloat in younger animals than in older animals. While we may surmise at the cause of this bias, there is no information on what actually causes it.

Therefore, while we have detected a signature of incidence compatible with genetics (estimated in the form of heritability), regrettably we do not think we can claim beyond doubt to have established that there is genetic variation in the likelihood of developing bloat. There are significant biases in the current dataset and the issue is whether these biases would either influence or produce the signature detected as an artefact. Although we feel this is unlikely, the presence of the biases described unfortunately prevent us from claiming to have determined risk of bloat is heritable in the Irish Setter.

 

Further work.

A further method of data analysis is currently being explored which may be particularly suited to data such as was collected from the survey. Survival analysis models the survival function from data of the age at which animals succumb to disease or death (and also the hazard function as the risk of disease at a particular age), and is a flexible way to incorporate censored data (i.e. animals unaffected or still alive at time of survey). Survival Kit software has been tailored towards animal breeders and allows the estimation of random effects (i.e. genetic variation). Work on using Survival Kit software and running survival analysis is being undertaken.

 While we are unable to state categorically that bloat is heritable in the Irish Setter, the evidence does appear to indicate that genetics could play an important role. Given the prevalence of bloat in this breed, and the concerns of breeders and owners, it may be useful to attempt to ‘extend’ the survey, by building and maintaining a database of details of dogs affected and unaffected by bloat. As the amount of data increases, it becomes easier to reduce the effects of bias seen in the current data set, for example if enough data were available analysis could focus solely on older dogs, reducing the influence of age (and providing a more reliable indicator of ‘lifetime’ risk). Assistance in this undertaking may be available from the Kennel Club.

Breeders may also wish to explore the idea of taking and storing DNA samples from both affected and unaffected dogs alongside a database of information as suggested above. While it is highly unlikely that a mutant variant of a single gene is solely responsible for the development of bloat, genetics could certainly have an important role, as stated above. As such, taking and storing DNA samples may bequeath the breed in future with an extremely useful resource to begin to track down regions of the DNA and maybe even genes which are responsible for increasing or decreasing the risk of developing bloat.  Because there are almost certainly multiple risk factors for bloat, some of which might be genetic, it will be necessary to collect DNA from large numbers (many hundreds) of dogs that have suffered at least one attack of bloat as well as DNA from a similar number of old dogs that have never had bloat before a genetic study is likely to be successful.

 

January 2017

...........................................

INTERIM REPORT

KC/AHT Bloat Survey.

The AHT/KC survey of Irish setters last year, with financial support of the JISBC, was aimed primarily at gathering evidence to prove that bloat is heritable. If proven, DNA samples could then be evaluated for possible genetic markers. However, it was always understood that it was very unlikely to be a simple inheritance (i.e. single gene mutation) pattern. Whilst there may be genetic susceptibility, environmental factors are likely to play a significant role.

Regrettably, although the results raised a suspicion that there is an inherited component to the condition, confounding factors prevented the results reaching statistical significance and therefore proof. The number of respondents and the fact that some of the dogs alive at the time of the survey may go on to develop bloat later in life confounded any clear conclusion.

The recommendation must therefore be that the breed prospectively collects DNA samples from dogs that suffer bloat. Whilst this outcome is disappointing, it is recommended that we work with the AHT to collect DNA samples and pedigrees of dogs when they suffer bloat confirmed by surgery or post mortem.

As you will be aware, the survey also gathered information on a number of other conditions. This data has not yet been analysed, but I have asked Tom Lewis (KC, formerly AHT) to analyse results pertaining to megaoesophagus and epilepsy, where it is more likely that heritability can be proven.

Ed Hall

Chairman, Joint Irish Setter Breed Clubs Health Committee

22/3/2015

 

Friday, January 20, 2017 - 22:33
KC/BSAVA Purebred Dog Health Survey 2004

In 2004 the Kennel Club and British Small Animal Veterinary Association joined with the Animal Health Trust to carry out a survey of pedigree dogs in UK.  A questionnaire was devised and sent to owners to try and identify which health conditions were present in each breed.  The questionnaires were circulated by breed clubs to their members.

The questionnaire was divided into different sections with questions on the health of the owner’s dogs, breeding, causes of death and birth defects in any puppies.

Where the breed response was 15% or greater, breed clubs received detailed feedback on the results which the Kennel Club felt should help with the recognition and control of important conditions in specific breeds.  It further felt that Data gathered would be the baseline against which the success of future control schemes can be measured.

The Irish Setter breed response was 24%.

The following link is to the results of this survey:

http://www.thekennelclub.org.uk/media/16534/irish%20setter.pdf

Tuesday, June 28, 2016 - 19:11
Kennel Club/Animal Health Trust Genotyping Project

Lay Summary

The Kennel Club and the Animal Health Trust are undertaking a project aimed at streamlining the way in which we screen DNA from dogs for mutations that cause inherited diseases and also the way in which we identify individual dogs, using their DNA. 

Briefly, we are attempting to select a set of genetic markers, known as single nucleotide polymorphisms (SNPs), that will enable parentage testing and DNA profiling, as well as disease mutation testing, to be done more time- and cost-effectively than currently. 

We need to know that the SNP markers we select can be used to successfully distinguish individual dogs of all breeds, and for this purpose a reference panel of DNA samples from ~24 dogs of ~ 40 different breeds will be collected (~960 dogs total).  The breeds have been selected to cover those with high numbers of KC registrations, a wide range of estimated effective population sizes (to cover very inbred and less inbred populations) and a wide range of breed types/classifications.  Within each breed, we have used computer-based optimization techniques to identify a sample of individuals representing the widest possible diversity as measured by their pedigree relationships.  This reference DNA panel (ref_DNA_panel) will be used to validate the SNPs selected during the project.

The owners of 200 dogs of 38 different breeds have been contacted and invited to contribute DNA from their dog to this project.  We have invited this number of owners because, typically, not everyone who is contacted will respond.  Owners willing to participate are invited to contact Aimee Llewellyn at the Kennel Club, via email aimee [dot] llewellynatthekennelclub [dot] org [dot] uk or phone 0207 518 1023, to request a DNA swab collection kit. 

 

Below is a copy of the email that has been sent to owners asking them to participate:

 

Dear,

The Animal Health Trust (AHT) and the Kennel Club would like to invite you to take part in a project investigating the genetic structure of the [insert breed].  You have been sent this email by the Kennel Club, in conjunction with the AHT, because you are the registered owner of [insert dog name] who is one of a number of dogs selected to represent the breed. Participation will be at no cost to you, as you will be sent a free kit, including a postage paid envelope.

The aims of the project are to streamline the way in which we screen the DNA from dogs for mutations that cause inherited diseases and also the way in which we identify individual dogs, using their DNA.

Some of the dogs whose DNA we receive will go on to be ‘genotyped’.  This means we will analyse their DNA for a set of genetic markers distributed around their genome, and also screen them for a number of mutations that are known to cause inherited disorders.  If [insert dog name] is one of those genotyped the results will be available to you free of charge, once the project has been completed.

We would like to stress that [insert dog name] has been selected to represent the [insert breed] based on his/her relationship with other dogs of the same breed; we have no expectation that your dog carries any disease mutations or will ever develop an inherited disease.

All information about you and your dog will be kept in the strictest of confidence, at all times, by both the Kennel Club and the investigators at the AHT.

We hope the results will increase our understanding of the genetic structure of breeds considerably, and will ultimately help us develop tools to improve the genetic health of dogs.

We would be delighted if you could help us with our project. Taking part is easy. You simply need to contact Aimee Llewellyn at the Kennel Club via email aimee [dot] llewellynatthekennelclub [dot] org [dot] uk or phone 0207 518 1023 to receive a free simple mouth swab kit which contains everything you need to submit a sample. Taking a mouth swab is quick, and completely harmless to your dog. There will be no cost at all involved for participants.

If you would like to help, we would be very grateful if you could contact us for a kit within 4 weeks from receipt of this email.

All the information you provide will be confidential to the investigators at the AHT. No health or personal information about you or your dog will be passed on.

Thank you for taking the time to contribute to our study and for helping us to help pedigree dogs.

Yours Sincerely,

Aimee Llewellyn

Genetics and Health Information Manager

 

Sunday, May 1, 2016 - 19:30
Laryngeal Paralysis

The condition consists of a degeneration of the nerves, which stimulate the muscles of the voice box (larynx).  Paralysis of the larynx is quite common in elderly dogs, especially males, and although the Labrador, Irish Setter and Afghan Hound seem to be particularly susceptible, practically any breed in the middle weight range could be involved.

Signs may go unnoticed because owners expect elderly dogs to slow up and huff and puff a bit when exercising.  One or more of the following are the most frequent signs of laryngeal paralysis:

  • Noisy laboured breathing
  • A moist retching cough
  • Changed bark
  • Reduced exercise ability
  • Episodes of extreme breathing difficulty, especially when exercising in hot weather.

Collapse and death can occur if the loose vocal folds block the airway completely.

If you believe your pet has this problem it is necessary to see your vet to get the diagnosis confirmed. Treatment is by operation to fix the voice-box in a safe position.  In spite of the age of many dogs subjected to surgery, the results are generally excellent.

Following the operation, the dog may be hospitalised for between two to four days, although dogs that bark excessively may be sent home earlier if there is concern they will tear the stitches.

Diet and exercise should be modified for the first six weeks after surgery as advised by your vet.

Although an immediate improvement of the respiratory distress may be evident, the full benefits of the surgery will not be seen for a couple of weeks, when the internal swelling has gone.

Most dogs cough to clear their throats to begin with, following ‘tie back’ surgery.  This may be quite frequent in the first week or so, particularly after eating or drinking.  The coughing should get less frequent, although a few dogs can cough once or twice a day indefinitely.

Tuesday, June 28, 2016 - 19:13
Lungworm or French Heart Worm.

Lungworm (Angiostrongylus vasorum) has only become a potential problem in UK in the last 15 years and affected dogs are now seen as far north as Scotland. It is generelly felt that our warmer climate is the reason for its spread.  It has a complicated life cycle and dogs eating the snail or slug is part of the cycle. In dogs, the worm usually lives in the blood vessels passing from the heart to the lungs, but it can migrate to other sites including the eyes and brain. It does not affect humans and cannot be transmitted to you through your dog. 

Dogs that are at risk of this parasitic worm are those that either eat slugs or snails deliberately, or eat grass and accidentally ingest small slugs and snails.  Younger dogs seem to be more likely to get infected but it is not unknown for older dogs to suffer.

Vets may advise lungworm treatment as part of your dog’s health regime because if it is not treated it can lead to death.  If you have one dog that is affected it is sensible to treat all your dogs.

Symptoms include:

Coughing

Breathing problems

Weight loss

Vomiting

Diarrhoea

Persistent bleeding from cuts

Depression

Not wanting to exercise

Weakness

Paralysis

 

If you know you have snails or slugs in your garden:

Don’t leave water bowls outside

Don’t leave toys and chews outside

Be particular about removing dog faeces daily

Don’t assume your usual worming tablets treat lungworm-they don’t

Ask your vet about the spot-on treatment that is available and make sure your dog is treated regularly.

Go to the site below to see a cartoon video of the life cycle of the lungworm

http://www.youtube.com/watch?v=gHgmIc4Vbrw&feature=player_embedded[ej1] 

Wednesday, April 27, 2016 - 22:07
Megaoesophagus

Megaoesophagus

The oesophagus is the muscular tube that takes food from the mouth to the stomach.  This is done by waves of muscular contractions, called peristalsis, which push the food along the tube.

Megaoesophagus (MO) refers to a large, flabby oesophagus which makes it difficult or impossible for food to reach the stomach because the peristaltic action does not happen as it should, probably because the nerves are not functioning properly.  Food cannot enter the stomach normally, but instead simply sits in the enlarged oesophagus and is eventually regurgitated.

Some cases of MO in Irish Setters are congenital, i.e. present at birth, but it may not be noticed that the pup has any problem until it is weaned when he will regurgitate food through the mouth and maybe fluids through the nose.  It may cough and make gurgling, rattling sounds. An affected pup generally will not thrive and will probably be smaller than his littermates.

MO can also be acquired later in life (about 4 years of age onwards) with similar clinical signs and poor prognosis.

The signs of MO are as follows:

Regurgitation may be considered the most typical sign of MO.  Weight loss with possible muscle wasting and a failure to thrive with a general weakness are common.  Increased swallowing motions with excessive drooling and dehydration are possible.  A ravenous appetite but with stunted growth or weight loss are usual, as is coughing, difficulty in breathing and pneumonia.

Regurgitation is different from vomiting:  Vomiting occurs when the contents of the stomach are expelled by muscular contractions of the abdomen.  Regurgitation is purely the return of food that has not reached the stomach and, as such, retching does not happen.  As it happens very quickly and with little effort littermates or mum may clean up the results before the breeder realizes it has happened.

Dogs with MO may not exhibit all of these signs, or even any of them to a significant degree.  Sometimes the only signs may be repeated bouts of aspiration pneumonia, or a wet cough that fails to clear up.  Some pups with congenital MO can grow out of the disorder and go on to enjoy a normal quality of life but others will be significantly affected and need careful food management for the rest of their lives.  If the problem is severe, however, the pup will not be able to get enough food and will have to be euthanased. Acquired disease in adult dogs never resolves.

A definitive diagnosis can be obtained by giving a barium meal.  In a normal pup, the barium will move into and through the stomach, but in the dog with MO, most of it will be seen collected in the oesophageal pouch in front of the stomach.

Another congenital reason for regurgitation is a vascular ring anomaly such as persistent right aortic arch.  Foetal blood vessels that should have disappeared at birth create a fibrous band that constricts the oesophagus.  This causes the oesophagus above the constriction to expand as the food cannot pass through the constricted area.  If caught in time, the vascular ring can be cut and the oesophagus often returns to normal.  Delaying surgery may cause irreparable oesophageal damage.

Oesophageal dilation and vascular ring anomalies are both believed to have a hereditary component because there is a breed disposition and a probable family predisposition.

If you believe your pet has MO then you will need veterinary advice.  If confirmed it is important to let your breeder know as well as the secretary of one of the breed clubs as information is being collected on the problem.

Megaoesophagus is one of the twenty inheritable gastro-intestinal diseases listed in the Merck Veterinary Manual and is listed as a severe trait in the “Hierarchy of Disagreeableness of a Genetic Trait”.

 www.merckvetmanual.org/mvm/htm/bc/100419.htm

 Follow the next link to an excellent article on MO with clear X rays of a dog without MO and one with MO. There is also a very clear visual of a dog with MO trying to eat

 http://www.marvistavet.com/html/body megaesphagus.html/

Sometimes MO doesn’t happen until later in life, maybe through trauma or being associated with other health problems but this form is not generally a problem with Irish Setters.

Can you help?

Greta Ross, health representative for the Irish Setter Club of Wales is still collecting information on MO and would like to hear from you about any Irish Setter that has had MO confirmed.  

Details asked for are:-

1. A copy of the letter from your Vet confirming MO by Barium Xray and date of diagnosis.

2. A four generation pedigree

3. Date of birth and whether the dog/bitch is alive or has died or been euthanaised and if so the date and age at the time this occurred.

4. Information whether the Irish's DNA has been sent to the Animal Health Trust either by blood sample or cheek swab, marked clearly as MO afflicted.

5. Any information of diet and and contents (fluid and /or solids)

6. Information on health conditions of parents and siblings, including any history of MO.

All information is treated with strict confidence and data collected will be given to Professor Ed Hall, Breed Health Coordinator and Chairman of the Breed Clubs Health Group.

Details for contacting Greta are:- email: Gretaatautumnglow [dot] co [dot] uk

                                                Tel: 01873 840291

                                                Address: Brynhyfryd, Llanfair Kilgeddin, Monmouthshire, NP7 9DY.

 

Wednesday, April 27, 2016 - 22:09
Porto-systemic shunts (Liver shunts)

Porto-systemic shunts (Liver shunts)

Professor E J Hall

A porto-systemic shunt (PSS) is an abnormal vessel that bypasses the liver so that blood which would normally drain from the intestines (via the portal vein) to the liver is ‘shunted’ directly into the general circulation. This causes significant ill health because of toxins from the gut reaching the brain. Ideally the shunt is surgically corrected.

Shunts are being recognised with increasing frequency in pedigree dogs (and occasionally in pedigree cats). They are most common in giant and toy breed dogs. Occasional cases have been seen in Irish setters although fortunately this is not (yet) a well known problem in the setter world.

We know that shunts are an inherited condition in the Irish wolfhound, but because of the prevalence in other specific breeds we suspect it is inherited in most cases. The exact genetic defect is not known yet, but work is underway in the USA. However, the mode of inheritance is not simple and parents and littermates may not be affected. However, breeding from parents that have produced affected offspring, or from affected animals cannot be recommended.

This article was written at the request of the Breed Club Health Coordinators with the aim of both raising awareness of this condition, so that cases are recognised and successfully treated, and ensuring appropriate measures to control breeding are applied.

This article draws on a client FAQ sheet given by the author to owners of affected dogs referred to Bristol Veterinary School.

What causes a shunt ?

This is a congenital problem, but although a patient is born with the PSS, signs usually only begin to develop weeks or even months after weaning, as the protein content of the diet increases. It is likely an inherited condition and breeding from affected animals is not recommended.

What does a PSS do to the animal?

A PSS can have a number of consequences:

1.Toxins [including ammonia (NH3)] produced by bacterial fermentation of protein in the intestines are not filtered by the liver and affect the brain. Variable neurological signs of ‘hepatic encephalopathy’ may occur e.g. restlessness, intermittent blindness, aimless wandering, head pressing, disorientation, increased thirst and even fits (seizures) and coma in severe cases.

2. Nutrients are not metabolised by the liver, which remains small. This can lead to stunting of the animal.

3. If the liver fails to produce adequate blood proteins, fluid may accumulate in the abdomen (‘ascites’) giving a pot-bellied appearance.

4. Sometimes the abnormal liver function leads to formation of stones in the kidneys and/or bladder and signs of blood in the urine or even obstruction.

5. Occasionally bacteria escape from the gut and, having evaded the liver, enter the circulation causing periods of ill health and raised temperature.

Where is the shunt ?

There are many anatomical variations on a theme, but in general there are two main types:

1.Intra-hepatic – the vein draining the intestine passes through the liver without dividing. This arises most frequently from failure of a vessel normally only present in the foetus to close. It is most commonly seen in giant breed dogs, and is a surgical challenge to correct.

2.Extra-hepatic – the shunt completely bypasses the liver and enters the general circulation directly via one of several possible routes; porto-caval is the most common type. Extra-hepatic shunts are more amenable to surgical correction.

 

shunt1

 

shunt 2

 

 

What is the ideal treatment ?

In an ideal world the PSS is tied off (ligated) surgically, and this can be curative. The success rate varies between 50 and 85% depending on the type of shunt and surgical expertise. At Bristol Vet School, we can also now attempt to treat intra-hepatic shunts by placing an occluding coil via a venous catheter. There is still a risk with this new procedure but even riskier open surgery is not required

In some cases, ligation is not possible, for either medical or financial reasons. These patients are managed medically to control the signs of hepatic encephalopathy. Medical treatment merely reduces the production of toxins and does not correct the shunt.

What can go wrong ?

The aim of surgery is to completely close the shunt. Regrettably it is not always that straightforward:

  • The shunt may be impossible to find
  • There may be inadequate veins going to the liver (or even none) so that complete closure of the PSS causes excessive back-pressure on the intestines. In mild cases this may cause temporary accumulation of fluid (ascites). In severe cases it can lead to death of the patient, and so the surgery has to be reversed.
  • There is a risk of serious haemorrhage, especially with intra-hepatic shunts, which may have to be dissected free of surrounding liver tissue. Placement of a coil by venous access is less risky but not widely available.

If the shunt is found but complete closure is not possible, a partial ligation may be performed. Alternatively a sterile cellophane band placed around the shunt, in order to cause scarring and gradual closure to allow time for the vessels to the liver to regrow.

What is medical management ?

The aim is to reduce intestinal production and absorption of toxins such as ammonia, and so reduce signs of hepatic encephalopathy. Medical treatment is indicated for:

  • For short-term stabilisation of patients before surgery
  • Patients where ligation of the shunt fails because of a lack of normal vessels going to the liver to cope with the revised blood flow
  • Patients where surgery is declined for whatever reason.

There are three lines of treatment

1.Dietary management

A restricted protein diet with carbohydrates as the main energy source should be fed. Veterinary diets such as RCW Hepatic Support or Hill’s l/d are suitable. Alternatively a home-prepared diet consisting of equal parts of boiled rice, pasta or potatoes with low-fat cottage cheese may be fed. IIf blood proteins are low, protein should not be restricted severely, and other methods must be used.

2. Lactulose

This synthetic sugar is a laxative that helps remove the intestinal contents rapidly before significant fermentation occurs. It also decreases the absorption of ammonia. The effect is quite variable, and the dose has to be tailored until the patient produces 2-3 soft motions per day.

3.Oral antibiotics

These help reduce the number of ammonia producing bacteria in the gut lumen.

Treatment is tailored by trial and error to each individual patient until signs of hepatic encephalopathy are controlled. Mild cases may do well on dietary management alone, whilst severe cases may require all three medications.

NB. Cases of PSS must be referred by their vet to other centres offering surgery (including Bristol Veterinary School); owners cannot make arrangements directly.

If your Irish Setter is diagnosed with a liver shunt, which is very rare in the breed, then please let your breeder know.

 

Wednesday, April 27, 2016 - 22:10
PRA Blindness

One of the health problems people associate with Irish Setters is PRA (Progressive Retinal Atrophy) which is a term for several different forms of hereditary conditions which lead to blindness and which is found in many breeds of dogs.  This was a major problem for the breed in the 1940’s and 1950’s and was the greatest threat to the breed.  This eye condition leads to gradually worsening vision and eventual total blindness in both eyes.  The condition is hereditary and is carried by a simple autosomal recessive gene.

The breed now has a DNA test for PRA rcd 1 mutation. Since the KC started its open register in 1995 no dogs that have been tested since then have been diagnosed with PRA rcd1 in UK.  This is an early onset form of the disease, puppies typically being diagnosed from about 6 weeks and being totally blind by about 12 months, with night blindness being noticed first.  Owners may notice that the dog is bumping into things in the dark or be unwilling to go outside.

By using the DNA test effectively this particular PRA is no longer a problem for Irish Setters in UK and since January 1st 2011 no Irish Setter puppy has been registered by the KC unless both its parents are either tested clear or are hereditarily clear. All imported Irish Setters also have to be either hereditarily clear or tested before they can be KC registered as well.  Do not buy a puppy unless both parents are clear.  This is clearly shown on the KC registration papers of the puppy. Remember both parents need to be clear not just one of them.

Why bother to have a PRA rcd 1 clear puppy? 

There are several reasons why this is important; the first being that if a pup is clear then it will never get PRA rcd1 and if you decide to breed then its puppies will never get the problem.  Responsible breeders have worked very hard to eradicate PRA rcd1 from the breed in UK and want to keep it that way.  Also, although you may not be thinking of breeding from your pet at the moment, you may change your mind later and unless both parents are clear from PRA rcd1 then the puppies cannot be registered with the Kennel Club.

In 2014 we were advised that an Irish Setter in mainland Europe had been confirmed as being PRA-rcd1 affected and was going blind. In UK it is very easy to become complacent and believe this problem no longer exists but it obviously does. 

 

Late onset PRA Blindness

Although PRA rcd1 is no longer a problem it is suggested you have your dog’s eyes tested at an eye clinic every two years, as there are other forms of PRA being identified.

Late Onset PRA (LOPRA) which, as the name suggests, does not show until the dog is older, has been identified in the breed. A mutation known as rcd4 has now been found, and a DNA test is available (NB. rcd2 and rcd3 are mutations found in other breeds).  Time of onset of blindness is variable but typically later in life. 

Recently a mid-onset PRA has been identified, with clinical signs of PRA developing in middle age. The genetic mutation has not yet been identified and research is ongoing.

Please look at "Spotlight on" to see the latest announcements about PRA rcd4 which is the mutation recently identified and for which a DNA test became available from 1st August 2011.

If you believe your Irish Setter has vision problems consult a veterinary ophthalmologist for a diagnosis of PRA. If it is confirmed then let the health representative of a breed club and your breeder know immediately.  They will be able to advise you what to do next as a DNA test will be needed to confirm if it is PRA rcd4. 

Any Irish Setter with suspected sight problems can have DNA testing free-of-charge if the sample sent to the AHT is accompanied by a certificate from a veterinary ophthalmologist confirming PRA (Progressive Retinal Atrophy) which is neither rcd1 or rcd4.

Monday, October 10, 2016 - 23:36
PRA rcd4

The Kennel Club PRA rcd4 Register is updated at the beginning of each month

http://www.thekennelclub.org.uk/item/3915

For pedigrees go to www.hooley-irish-setters.co.uk/search.html 

************

DNA testing scheme for Irish Setters - PRA rcd4

Following consultation with the Irish Setter Breed Health Committee, the Kennel Club has recently approved a new official DNA testing scheme for PRA (rcd-4) in the breed.
 

Follow the link for further information:

 

*********

DNA Testing for PRA RCD4 is available

http://www.ahtdnatesting.co.uk/

We advise that all breeding stock is tested before mating. 

**************************

Following a meeting between Professor Ed Hall, Chairman of the Breed Health Committee, Dr Cathryn Mellersh. Canine Genetics Research Group Leader from AHT and Dr Jeff Sampson, Genetics consultant to the Kennel Club we have been advised by Ed Hall that in addition to the 7 dogs which have been identified with PRA rcd4 there are 3 more having "mid-onset" PRA and which do not have rcd1 or rcd4. 

Any Irish Setter with suspected sight problems can have DNA testing free-of-charge if the sample sent to the AHT is accompanied by a certificate from a veterinary ophthalmologist confirming PRA       (Progressive Retinal Atrophy).

To get your dog tested for PRA by an ophthalmologist you will need to see your vet first and ask for a referral to an eye specialist.

10/8/2011

 ****************

Joint Irish Setter Breed Clubs

Statement on the control of the rcd4 mutation in Irish Setters

The Joint Irish Setter Breed Clubs (JISBC) have drawn up the following guidelines for the control of the recently discovered rcd4 mutation which causes Late Onset Progressive Retinal Atrophy (LOPRA) in Irish Setters. Whilst it should be stressed that clinical signs of LOPRA usually appear after the age of 9 years, the JISBC still believe it to be a welfare issue, although it is noted that many dogs can cope with blindness.

Data from the Animal Health Trust so far suggest the prevalence of carriers of the rcd4 mutation (i.e. heterozygotes) in the breed is about 42% and therefore the proposed guidelines are considered appropriate at this time. The JISBC recognises the need to maintain genetic diversity within the breed and does not yet recommend a complete ban on breeding using carrier or affected dogs.

However, the principle of these guidelines is that no dogs should be produced that will develop PRA and become blind, and therefore all members of the JISBC agree that:

     1. All caring and resonsible breeders will test their stock before planning a mating.

  • Any rumour and supposition about a dog’s genetic status should be ignored; DNA-testing should be undertaken.
  • As DNA-testing is now available, ‘hereditarily clear’ dogs will be produced. However such dogs should still be tested before being used for breeding because of the potential difficulty in proving parentage.
  • If the rcd4 status of any stud dog, or its semen, is unknown then the bitch to be mated must be tested and found CLEAR.                                                                                    

2. AFFECTED dogs (i.e. homozygous for the rcd4 mutation) should never be mated with other AFFECTED dogs as all progeny will be AFFECTED.

Thus the following are recommendations about potential matings that the JISBC consider acceptable at this time:

  • CLEAR x CLEAR matings are encouraged.
  • CLEAR x CARRIER* matings: progeny will, on average, be CLEAR (50%) or CARRIERS (50%) and should be DNA‑tested before breeding.
  • CLEAR x AFFECTED* matings: all progeny will be CARRIERS.

* It is recommended that any use of AFFECTED and CARRIER stud-dogs is given serious, cautious consideration by both stud-dog owners and breeders before planning a mating.

Purchasers of any dogs produced by CLEAR x CARRIER and CLEAR x AFFECTED matings should be advised that these dogs will not develop PRA rcd-4, but should not be used for breeding unless tested.

 

All breeders should note that AFFECTED x CARRIER or CARRIER x CARRIER matings may produce some AFFECTED dogs.

  1. CARRIER x CARRIER matings will produce, on average, 25% AFFECTED progeny.
  2. AFFECTED x CARRIER matings will produce, on average, 50% AFFECTED progeny.

Purchasers of any dogs produced by such matings should be advised that some of these dogs may develop PRA rcd-4 and should not be used for breeding unless DNA-tested.

 

The JISBC will continue to monitor the prevalence of the rcd4 mutation within the breed. However it is aware that a further PRA mutation that causes blindness at an earlier age (so-called mid-onset PRA) may be present in the breed but has yet to be confirmed and characterised genetically. Thus control measures for rcd4 may need to be modified if this new form of PRA is prevalent, as the earlier onset of blindness clearly has an even greater welfare implication.

 

Signed on behalf of the following breed clubs, which endorse and support these recommendations

  • Belfast & District Irish Setter Club
  • The Irish Setter Association England
  • The Irish Setter Breeders Club
  • The  Irish Setter Club of Scotland
  • The  Irish Setter Club of Wales
  • The  Midlands Irish Setter Society
  • North-East of England Irish Setter Club
  • The  South of England Irish Setter Club

 

Professor E J Hall

 

Chairman, Irish Setter Breed Clubs Health Coordinator Group

29 February 2012

 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 

Statement from The Animal Health Trust   

Progressive Retinal Atrophy in the Irish Setter

Progressive Retinal Atrophy (PRA) is a well-recognised inherited condition that many breeds of dog are predisposed to.  The condition is characterised by bilateral degeneration of the retina which causes progressive vision loss that culminates in total blindness.  There is no treatment for PRA, of which several genetically distinct forms are recognised, each caused by a different mutation in a specific gene.  The various forms of PRA are typically breed-specific, with clinically affected dogs of the same breed usually sharing an identical mutation.  Clinically affected dogs of different breeds, however, usually have different mutations, although PRA-mutations can be shared by several breeds.

A mutation for an early-onset form of PRA, known as rcd1, was identified in Irish Setters as long ago as 1993, and is well-documented to affect dogs from a few weeks of age.   More recently dogs have been identified with a seemingly different form of PRA that affects dogs later in their lives and is known to be different from rcd1.  This alternative form became known as “LOPRA” – for Late-Onset PRA.  Unlike rcd1, where all dogs became affected at almost exactly the same age the age of onset of dogs with LOPRA varied, from a few years of age (2-3 yo) up to old age (10-11 yo).  It was unclear whether these dogs all shared the same form of PRA or whether there were genetically distinct forms of PRA segregating in this breed.

 

Mutation Identified

In 2011 geneticists working in the Kennel Club Genetics Centre at the Animal Health Trust identified a recessive mutation that is associated with the development of LOPRA in the Gordon Setter.  Owners of Gordon Setters with LOPRA report that their affected dogs develop night blindness in the first instance, which is indicative of a rod-cone degeneration, so we have termed this mutation rcd4 (for rod-cone degeneration 4) to distinguish it from other, previously described, forms of rod-cone degeneration.

Following our work with rcd4 in the Gordon Setter we have found some Irish Setters that have been diagnosed with PRA also carry two copies of the rcd4 mutation.  As a result the AHT will make the rcd4 DNA test available to Irish Setters, from August 1st 2011.  The DNA test we are offering examines the DNA from each dog being tested for the presence or absence of this precise mutation and is thus a ‘mutation-based test’ and not a ‘linkage-based test’. 

 

Other Forms of PRA

The research we have carried out to identify the rcd4 mutation has revealed that there are at least three forms of PRA segregating in the Irish Setter; rcd1, rcd4 and an additional, third form, that has yet to be identified.  We know there is a third form of PRA because of the ten dogs with LOPRA, whose DNA we have been sent to analyse, only 7 have two copies of the rcd4 mutation.  The remaining 3 dogs do not carry either the rcd1 or rcd4 mutations, meaning their PRA must be due to another, as yet unidentified, mutation.  There is some evidence that this third form of PRA has, on average, an earlier age of onset than rcd4, but we need to examine more dogs before we can be confirm this.

The age at which dogs with the rcd4 mutation develop PRA seems to vary and we know about dogs as young as 4yo and as old as 10yo, that have been diagnosed with LOPRA, and that carry two copies of rcd4 mutation.  But it is important to remember that the age at which a dog is diagnosed with PRA can vary according to circumstances, and is not necessarily the same age at which it started to develop PRA.  For example, a dog whose PRA is detected at a routine eye examination will have an earlier age of diagnosis than a dog whose PRA was only detected once it started to lose its sight.  It is also possible that the dogs that have developed PRA very early also carry the mutation for the third, unidentified, form of PRA (as well as rcd4) and it is this ‘mid onset’ mutation that has caused them to develop PRA at a relatively young age.  More research will be required to understand the variability in age of onset more fully.

Our research indicates rcd4 is a common form of PRA among Irish Setters and the development of this test therefore enables breeders to slowly decrease the frequency of an important form of PRA in their lines.  However, because we know that at least one other form of LOPRA exists within the breed, we cannot guarantee that any dog will not develop PRA, even if they are clear of the rcd4 mutation. 

 

Rcd4 DNA Test

Breeders using the rcd4 DNA test will be sent results identifying their dog as belonging to one of three categories.  In all cases the terms ‘normal’ and ‘mutation’ refer to the position in the DNA where the rcd4 mutation is located; it is not possible to learn anything about any other region of DNA from the rcd4 DNA test. 

CLEAR: these dogs have two normal copies of DNA.  Clear dogs will not develop PRA as a result of the rcd4 mutation, although we cannot exclude the possibility they might develop PRA due to other mutations they might carry that are not detected by this test.

CARRIER: these dogs have one copy of the mutation and one normal copy of DNA. These dogs will not develop PRA themselves as a result of the rcd4 but they will pass the mutation on to approximately 50% of their offspring.  We cannot exclude the possibility that carriers might develop PRA due to other mutations they might carry that are not detected by this test. 

GENETICALLY AFFECTED: these dogs have two copies of the rcd4 mutation and will almost certainly develop PRA during their lifetime.  The average age of diagnosis for dogs with rcd4 is 10 yo, although there is considerable variation within the breed.

 

Advice

Our research has demonstrated that the frequency of the rcd4 mutation in Irish Setters is high and approximately 30-40% of dogs might be carriers. The mutation is recessive which means that all dogs can be bred from safely but carriers and genetically affected dogs should only be bred to DNA tested, clear dogs.  About half the puppies from any litter that has a carrier parent will themselves be carriers and any dogs from such litters that will be used for breeding should themselves be DNA tested prior to breeding so appropriate mates can be selected.  All puppies that have a genetically affected parent will be carriers.

It is advisable for all breeding dogs to have their eyes clinically examined by a veterinary ophthalmologist prior to breeding and throughout their lives so that any cases of PRA caused by additional mutations can be detected and that newly emerging conditions can be identified.

20/7/2011

********************* 

PRA rcd4 (LOPRA)    Some questions answered

(please read this alongside the AHT announcement)

I have been asked a number of questions on this subject, and the following answers try to throw light on the current situation.

  1. What does it mean to be genetically affected but not yet clinically affected by PRA rcd4?

Unlike PRA rcd1 and CLAD, which can be seen in very young puppies, PRA rcd4 may not be visible to the owner or even to the vet or ophthalmologist until later in life.  The dog is genetically affected from birth and a DNA test for PRA rcd4 will show this; however the clinical signs of deteriorating eyesight will not be present until sometime later in life and, in fact in a few cases, may never occur.  The dog has the defective genes from birth although the clinical signs are not present and this must be understood when considering a breeding programme.

  1. Explain the meaning of “homozygous for PRA rcd4”.

This is frequently referred to as having “two copies of the mutant gene” and thus being genetically affected.

In layman’s terms this means that the defective gene is inherited from both parents.    

If the defective gene is inherited from only one parent the dog will be a “carrier” of the condition  which means the defective gene can be passed to the offspring but this dog will never have this condition.  This is typical of a recessive mutant gene and most of us are familiar with it in PRA rcd1 and CLAD.

  1. Remind me what happens if an affected dog is mated to a clear.

AFFECTED to CLEAR >>>>>>>>>>  100% CARRIERS

AFFECTED to CARRIER >>>>>>>>> 50% AFFECTED; 50% CARRIERS

CARRIER to CLEAR >>>>>>>>>>>> 50% CARRIERS; 50% CLEAR

CARRIER to CARRIER >>>>>>>>>>  25% AFFECTED; 50% CARRIERS; 25% CLEAR

  1. How do we know there might be 30-40% of dogs in our breed that are carriers?

A random check was performed on a large number of DNA samples stored at the AHT and this provided the information.  The large number of samples used by the AHT means that the proportion of carriers for that sample is likely to reflect the proportion throughout our breed.

  1. Will we be told the individual results from this test run?

No.  The AHT have permission to use the samples stored for research purposes i.e. in the development of a new test, and to provide a statistical analysis of the results but not to provide individual dog’s names or results.

The way forward is to test the dogs you own now, particularly your breeding stock, and to move forward from this.

The advice so far is to avoid producing genetically affected puppies – if you find you have an affected dog or a carrier with which you wish to breed only breed to a clear dog.

  1. What do we know about another form of LOPRA that exists in the breed?

We know there is a third form of PRA in the breed as 3 dogs have been clinically identified as having PRA but their DNA shows that they do not have PRA rcd1 or PRA rcd4.  It probably occurs at a younger age then PRA rcd4.  It may be the cause of blindness in the younger dogs that also have the PRA rcd4 mutation.  Further research will be needed to find the mutation if more cases are found.  

  1. How many dogs so far (July 2011) are homozygous for PRA rcd4?

We only know of 7, 6 of which have been named by their owners.  I understand that there were very few in the research run but we have not been given further information on this.  I do, however, have a personal story to tell as a result of this research run.

My experience has been with my old dog, Willow (Kirkavagh Karamita of Follidown), until now referred to in newsletters but not named because of the uncertainty involved in her condition at the time.  During the research she was found to have two copies of (i.e. homozygous for) the PRA rcd-4 mutation and she was blind and she was 13 years old.  This seemed to confirm the research programme but on examination by two highly respected ophthalmologists she was found not to have LOPRA.  Her blindness was caused by typical problems of old age – some cataract and sclerosis of the lens.  If she had lived longer she may have developed LOPRA but, very sadly, she died in April.   ( Incidentally, she coped very well in her familiar environment with her blindness but did need extra help and consideration because of her condition.)

Most of you will have read about her already but it provides an important case study and a good reason not to panic if the DNA test shows your dog to be homozygous for PRA rcd-4.  Your dog may never go blind despite having the genetic mutation.

If you have any further questions, please email me and I will try to help.

Gillian Townsend

ISAE Health Representative.

Email: townsendatwaitrose [dot] com

*********************

 A statement from the Irish Setter Breed Clubs Health Coordinators Committee concerning

Late Onset Progressive Retinal Atrophy (LOPRA)

Recently, DNA samples from Irish setters diagnosed with Late Onset Progressive Retinal Atrophy (LOPRA) have been submitted to the Animal Health Trust for genetic analysis. So far several dogs have been diagnosed with two copies of the rcd-4 mutation (i.e. homozygous). This means these dogs are clinically affected with a condition that has previously been described in Gordon setters.

The Animal Health Trust is hoping to release a DNA test for rcd-4 in Irish setters in the near future and when it is available the scale of the problem in the breed can be assessed and an appropriate strategy to eradicate the condition can begin. Until that time the Committee advises against panic and ill‑informed rumour.

Whilst the recognition of LOPRA in the breed is a serious and unwanted development, we should take heart that previous genetic problems (e.g. PRA rcd-1, CLAD) in the breed have been conquered by dedicated breeders implementing controlled breeding schemes, and there is no reason to doubt an eradication programme, when launched, will be successful.

Professor Ed Hall

Chairman, Irish Setter Breed Clubs Health Coordinators Committee

**************

Irish Setter Breed Clubs Health Coordinators Committee

Late Onset Progressive Retinal Atrophy (LOPRA)

 

Following the discovery of Irish setters clinically affected with LOPRA in association with two copies of the rcd-4 gene (i.e. homozygous), so far the following six dogs (in alphabetical order) have been identified as affected.

  • Joben Midnight Memories
  • Joben Midnight Moments
  • Konakakela Red Admiral at Ixia
  • Millcroft the Moon's Shadow
  • Starchelle Buddy Holly
  • Wickenberry Capsicum

These names are being published with the permission of their owners/breeders in a spirit of openness in order to alert responsible owners and breeders and to prevent the propagation of unfounded rumours.

We await an announcement from the Animal Health Trust on when the rcd-4 test will be made available.

Professor Ed Hall

Chairman, Irish Setter Breed Clubs Health Coordinators Committee

Sunday, May 1, 2016 - 19:32
Pyometra

Pyometra is an infection of the uterus which needs immediate veterinary attention.  If not treated it will be fatal.  Any unspayed bitch can be affected although it is usually found in older bitches and signs are generally noticed 6-8 weeks after her season. If a bitch has had puppies it will stop her from getting a true pyometra but she can still suffer a uterine infection.

Causes.

When the bitch is in season there are hormonal changes to the uterus which is preparing itself for puppies.  She has a bloody discharge, which is normal, and her cervix, which is normally closed, opens slightly to release this discharge before mating takes place.  The open cervix can allow bacteria to enter the uterus which has become an ideal breeding place because repeated hormonal changes during each season have altered its lining.

Open or closed pyometra.

Sometimes the uterine cervix remains slightly open and this is called an open pyometra and is usually easier for the owner to notice as there will be a foul smelling discharge which is totally unlike her usual discharge.  If the uterus closes completely this is a closed pyometra and there is no obvious discharge.  This makes it more difficult for an owner to realise there is a problem and by then the infection could be severe.  This is why it is really important to watch your bitch closely 6 – 8 weeks after her season to see if there are any symptoms.

Signs.

In both open and closed pyometra some of the following may be noticed but don’t wait to see them all.  Sometimes all you notice is that your girl is “off colour” and you can’t be certain as to what is wrong.  That is enough to make an appointment with your vet, especially if it is 6- 8 weeks after her season.

  • Listless and depressed
  • Drinking a lot of water
  • Loss of appetite
  • Distension of the stomach: particularly in a closed pyometra
  • Vomiting
  • Diarrhoea
  • Fever
  • Dehydration

 With an open pyometra you may also see:

  • Cleaning herself constantly under her tail
  • Pus on her bedding and on her tail
  • Foul smell from the pus

Treatment.

The usual and most effective way to treat pyometra is surgery to remove the womb and ovaries and this is probably what your vet will recommend.  The spread of infection during the operation is a great worry and it is likely that antibiotics will also be given. However, there is a new treatment that is now available which means an operation may not be necessary. 

It is important that you watch your bitch closely 6 – 8 weeks after her season as that is the time when you will see the signs.  The earlier she is treated the better the chances of her survival.

This link is to Wikipedia which has photographs but it is not for the squeamish:

http://en.wikipedia.org/wiki/Pyometra

The following is a link to a scientific paper Canine Pyometra: Pathogenesis, Therapy and Clinical Cases presented by Prof. Stefano Romagnoli, University of Padua, Italy

http://www.vin.com/proceedings/Proceedings.plx?CID=WSAVA2002&PID=2686

Wednesday, April 27, 2016 - 22:11
Saying Goodbye

The loss of a beloved companion can be the worst part of owning a pet. And when that tragedy is because of an unexpected and premature death through illness, the feelings of loss and grief are magnified. At such times one often feels that one’s pet has suffered enough and burial or cremation will allow closure. At that time the thought of a post mortem examination is anathema to many owners.

Regrettably, nothing is ever going to bring one’s pet back, but some solace can be gained by finding out the exact cause of an unexpected death. However, even more importantly, other dogs can benefit in the future. Whilst a post mortem examination clearly cannot help your pet, it can help vets understand diseases and ultimately learn something that may make a difference to the next dog to suffer the same condition. In addition, dogs specifically donated to Vet Schools provide essential training for tomorrow’s vets.

Yet even knowing the benefits that a post mortem examination can bring, many still will not contemplate this for fears that their pets will be experimented upon and that their organs will be retained for research. As someone who works in a Vet School, I can assure you that this does not happen; animals are treated with the same respect as if they were alive.

Post mortem examinations undertaken for legal cases do incur significant costs, and your local practice may charge for the examination. However, many Vet Schools will provide a post mortem service at a reduced cost or even for free for donated animals; they may only charge if you want a full written report. Unfortunately after a post mortem examination, release of the body for burial at home is not allowed because of the risk of infections; but individual cremation with the return of ashes can be arranged, although this service does incur a cost.

Finally, the JISBC Health Committee has become aware of a number of cases of unexpected sudden death in Irish setters due to internal bleeding. Post mortem examinations will be essential to identify the prevalence of this emerging problem, and to investigate its cause, with the ultimate aim of finding a solution. Recently reported cases have occurred in Scotland, and Dr Tennant at the Scottish Agricultural College has said they are willing to provide post mortem examinations at minimal cost on setters that have died suddenly.

So whilst saying goodbye is always hard, please think whether some good can come out of the loss of your pet by considering a post mortem examination.

 

Prof Ed Hall, JISBC Health Coordinator

Wednesday, April 27, 2016 - 22:13
The Immune System and Autoimmune Disorders

To understand auto immune diseases it helps to have a basic understanding of the immune system itself.

The immune system is the protective mechanism for the body and is highly complicated.  There are basically two parts to it.  The first is the purely physical, being the barriers such as the skin or mucous membranes or the chemical, such as the acids in the stomach which destroy bacteria.

Should this level of defence fail, which it does for any number of reasons, then the body’s next level of defence will kick in.

When a body is invaded, for the first time, let’s say by kennel cough, once the body has realised there is an invader a series of reactions will take place which will ultimately kill off the virus.  However, this does not happen immediately as it takes time for the body to recognise the invader and symptoms for the illness will occur.  Once the invader is destroyed, the body switches off the immune reaction.  Should the kennel cough return later the immune response will be much quicker as the cells responsible will recognise the invader and react more quickly. 

However it is important that the body recognises the difference between itself and the invader, so it only attacks the invader.  To allow this to happen, the dog’s cells have their own set of molecules on their surface, which the immune system recognises.  The invader, on the other hand, has a different set, called antigens, which the immune system recognises as different, and which, when recognised, will cause the immune system to launch an attack on the invader, whilst not attacking its own cells.

It is essential that both the recognition and discrimination parts are working properly for the immune system to function as it should.  Usually it works well but sometimes it goes wrong, either by overreacting or not reacting at all and sometimes it reacts to its own body cells and this is called autoimmunity.

Click on the following link for a more detailed description of the immune system.

http://www.peteducation.com/article.cfm?c=2+2101&aid=957

 

Autoimmune Disorders

There are a number of auto immune diseases, of which some are detailed below. As far as we know there are no statistics available for auto immune diseases in Irish Setters but it is believed the incidence is very low.  However, it is useful to be aware of them as prompt diagnosis and treatment can make all the difference.

It is generally accepted that auto immune disease is highly complex and there will probably not be one single factor involved.  Whilst a litter may have the predisposition to auto immune disease, through its genes, it may never manifest itself, or different littermates may develop different auto immune diseases.  There is a highly complex relationship between the genetics, which in itself is not simple as it is believed that several genes are involved, and the environment, possibly including stress, vaccinations and other variables.

It is accepted by many people that there is a genetic factor and therefore it is recommended that should a dog or bitch have an auto immune disease it should not be used for breeding and, ideally, parents of dogs which develop auto immune diseases should not be breed from again. If your Irish Setter is diagnosed with an autoimmune disease then let a breed club know as well as your breeder.

If you are concerned about auto-immune disease or have an Irish Setter that has been diagnosed with an auto-immune disease the following maybe helpful to you.

CIMDA

Jo Tucker had a Bearded Collie who had an auto immune disease and as a result she became very interested in auto immune diseases and wanted to help others who found themselves in the same situation as herself.

She set up CIMDA (Canine Immune Mediated Disease Awareness) for all owners of any dog that has been diagnosed with an Auto-immune condition or for owners who believe their dog might have an autoimmune disease.  CIMDA offers help, advice and support to those owners and Jo is very knowledgeable.  She is always willing to help and her expertise and guidance has helped to ensure a speedy diagnosis and correct treatment.

http://cimda.co.uk/

Addison’s Disease -hypoadrenocorticism

Addison's disease is so called because it was Thomas Addison who identified it in the 1800’s.  The adrenal glands produce the hormones cortisol and aldosterone which are needed for different functions in the body.  One of cortisol’s main functions is to help the body respond to stress while aldosterone helps to maintain the balance of salt and water in the body which is vital for the functioning of the kidneys. In Addison’s disease the adrenal glands are damaged and cannot produce enough hormones.

Symptoms:

  • fatigue – not wanting to exercise
  • muscle weakness
  • loss of appetite
  • weight loss
  • vomiting and /or diarrhea
  • increased thirst leading to having to urinate during the night
  • bitches might miss seasons
  • Because the symptoms are gradual and often vague they can often go unnoticed and make it difficult for a vet to diagnose it easily.  If it not diagnosed early then an Addisonian crisis may occur.This could begin with vomiting and diarrhea, followed by collapse and maybe even a coma and the dog needs immediate veterinary treatment.

The following link gives a more detailed account of Addison’s disease:

http://www.vetrica.com/puppy_addisons-disease.html

 

Autoimmune haemolytic anaemia
There are a number of reasons why your dog may be anaemic and AIHA is only one reason, and an unusual one at that.  Anaemia occurs when there are low numbers of blood cells, which contain haemoglobin which carries oxygen around the body.  Haemolytic anaemia occurs when there is a destruction of the red blood cells and the body cannot keep up with reproducing new blood cells. This is when symptoms may be seen.   Usually the signs are slow and gradual and you may not be aware that your Setter has a problem until it collapses. 
Signs to look for are:
·       an increase in heart rate
·       increased breathing
·       weakness
·       lethargy. Not wanting to go out on exercise or to play.  Sleeping a lot or lying around a lot when they are normally active.
·       loss of appetite
·       pale mucous membranes.  It is very easy to see if the gums are pale, they should be a good pink colour and not pale or white.
·       fever
·       jaundice, which can be seen by yellow gums or eyes.
 
Immune-mediated thrombocytopenia
Thrombocytes are the cells which are responsible for making the blood clot and Immune-mediated thrombocytopenia (ITP) is the destruction of these cells.
Symptoms:
·       excessive bleeding after an accident or operation
·       excessive bleeding when a bitch is in season
·       bruising
·       petechiae-very smalls specks of blood on the skin
·       blood in the urine or stools
Before ITP can be diagnosed other more common diseases must be ruled out. These could include hemophilia or Warfarin poisoning. (Warfarin is used as a bait to control rats)
The site linked below lists the different autoimmune disease, symptoms, diagnosis and treatment.
http://www.provet.co.uk/petfacts/healthtips/autoimmunedisease.htm

Autoimmune haemolytic anaemia

There are a number of reasons why your dog may be anaemic and AIHA is only one reason, and an unusual one at that.  Anaemia occurs when there are low numbers of blood cells, which contain haemoglobin which carries oxygen around the body.  Haemolytic anaemia occurs when there is a destruction of the red blood cells and the body cannot keep up with reproducing new blood cells. This is when symptoms may be seen.   Usually the signs are slow and gradual and you may not be aware that your Setter has a problem until it collapses.

Signs to look for are:·      

  • an increase in heart rate    
  • increased breathing     
  • weakness      
  • lethargy
  • Not wanting to go out on exercise or to play  
  • Sleeping a lot or lying around a lot when they are normally active      
  • loss of appetite       
  • pale mucous membranes.  It is very easy to see if the gums are pale, they should be a good pink colour and not pale or white.       
  • fever       
  • jaundice, which can be seen by yellow gums or eyes

Immune-mediated thrombocytopenia

Thrombocytes are the cells which are responsible for making the blood clot and Immune-mediated thrombocytopenia (ITP) is the destruction of these cells.

Symptoms:·      

  • excessive bleeding after an accident or operation      
  • excessive bleeding when a bitch is in season      
  • bruising      
  • petechiae-very smalls specks of blood on the skin      
  • blood in the urine or stools

Before ITP can be diagnosed other more common diseases must be ruled out. These could include hemophilia or Warfarin poisoning. (Warfarin is used as a bait to control rats)The site linked below lists the different autoimmune disease, symptoms, diagnosis and treatment.

http://www.provet.co.uk/petfacts/healthtips/autoimmunedisease.htm

Tuesday, May 3, 2016 - 18:03
Update: Epilepsy Research (August 2014)

Irish Setter Epilepsy Research Update

Lotta Koskinen, PhD

Canine Genetics Research Group

University of Helsinki and Folkhälsan Research Center, Finland

Researchers at the University of Helsinki and Folkhälsan Research Center in Finland are collecting samples from Irish setters to study genetics of idiopathic, also called as primary or genetic, epilepsy in the breed. The project is carried out by Professor Hannes Lohi’s research group in collaboration with researchers in the University of Utrecht, Netherlands, and University of Missouri, USA. Lohi’s research group focuses in the identification of genes underlying various diseases and traits in dogs, with the main interest in neurological disorders. As epilepsy is the most common neurological disease in dogs, epilepsy in multiple dog breeds one of the most important projects in the group.

According to pedigree analyses, epilepsy is an inherited disorder in many dog breeds including Irish Setters. Despite genetic contribution, there are only a few genes identified for canine epilepsy to date. The common, adult onset idiopathic epilepsy in dogs is most likely not a disease caused by a mutation in a single gene. It is likely that there are genetic variants, which increase the risk of seizures, but do not necessarily cause them in all individuals carrying them. The preliminary results gained from a genetic analysis of altogether 75 Irish Setters collected in the USA by Prof. Gary Johnson’s research group (University of Missouri) support this idea of a more complex inheritance model than previously suspected based on pedigrees, as no epilepsy-associated genes were identified in this cohort. To identify the epilepsy-associated genetic variation in Irish Setters, more samples are being collected from epilepsy-affected and unaffected dogs. The unaffected dogs should be more than 7 years old without any symptoms of epilepsy.

Currently, samples are actively being collected in Finland, United Kingdom, Netherlands, Switzerland and Estonia. By August 2014, samples from 287 red Irish Setters were submitted to the research project, this included 54 samples from United Kingdom. Thirty-six of them were reported to have epilepsy (16 from UK). The number of sampled dogs with epilepsy has been increasing during the past couple of years, but still more samples are needed to continue with the research.

In addition to samples, thorough and up-to-date health information is collected from each dog as well as pedigree information. A 10-page epilepsy questionnaire is collected from each dog with epileptic seizures.

Even if an adequate number of samples is collected to continue with the genetic studies and the disease-predisposing gene is identified, it may not be possible to develop a genetic test. It depends on how strongly the risk-conferring genotype and epilepsy phenotype are correlated. However, the identification of a risk gene would help us in understanding many aspects of the disease in the breed, and about the molecular pathogenesis of epilepsy in general.

August 2014

 

If you would like to be part of this research further information and swab packs can be obtained from:
Meg Webb: SEISC Health Representative

If you already have packs and haven’t yet used them then please do so as soon as you can.

 

This initiative is supported by The Joint Irish Setter Breed Clubs Health Committee.

Tuesday, June 28, 2016 - 19:17
Update: Epilepsy Research (February 2017)

During the last four years around 40 DNA samples from UK Irish Setters which have been diagnosed with epilepsy have been sent to Professor Hannes Lohi’s Canine Genetics research group at the University of Helsinki. Samples from some 80 close family members of these dogs and some 40 older dogs which have not had seizures have also been sent.

The aim of the research is:” to discover new genes causing heritable characteristics and illnesses in dogs.”

The University has just released the following exciting news:

 

Uni­versity of Hel­sinki

Sig­ni­fic­ant epi­lepsy gene dis­cov­ery in dogs

 

Researh groups from the University of Helsinki, the LMU Munich and the University of Guelph have described in collaboration a novel myoclonic epilepsy in dogs and identified its genetic cause. The study reveals a novel candidate gene for human myoclonic epilepsies, one of the most common forms of epilepsy. As a result, a genetic test was developed for veterinary diagnostics and breeding programs.

A collaborative study describes a novel myoclonic epilepsy syndrome in dogs for the first time and discovers its genetic cause at DIRAS1 gene. The affected dogs developed myoclonic seizures at young age – on average 6 months old - and seizures occur typically at rest. In some of the dogs the seizures could be triggered by light.

A novel can­did­ate gene for hu­man myoclonic epi­lep­sies

– The canine myoclonic epilepsy resembles human juvenile myoclonic syndrome in many aspects and the study has therefore meaningful implications for epilepsy research across species, says Professor Hannes Lohi from the canine gene research group, University of Helsinki.

Myoclonic epilepsies are one of the most common forms of epilepsy in human and the canine findings will not only help in diagnostics but also provide a novel entry point to understand the pathophysiology of the disease. The identified DIRAS1 gene may play a role in cholinergic transmission in the brain and provides a novel target for the development of epilepsy treatments.

– We found a novel epilepsy gene, DIRAS1, which has not been linked to any neurological diseases before. The gene is poorly characterized so far, but some studies suggest that it may play a role in cholinergic neurotransmission, which could be a highly relevant pathway for the myoclonic epilepsies, explains MSc Riika Sarviaho co-first author of the study.  

– The genetic backgrounds of myoclonic epilepsies are not well known yet, and our study provides a new candidate gene, which helps to further characterize the underlying pathophysiology in future studies. This would be important for the development of new treatment scenarios, summarizes Professor Lohi, senior author of the study.

The affected dogs continue to serve as preclinical models when new treatment options are sought in ongoing studies. 

A ge­netic test helps breed­ing and dia­gnostics
 

The results have implications for both veterinary diagnostics and breeding programs.

– We screened over 600 Rhodesian Ridgebacks and about 1000 epileptic dogs in other breeds and found that the DIRAS1 defect was specific for juvenile myoclonic epilepsy in Rhodesian Ridgebacks so far, says MSc Sarviaho.

– With the help of the genetic test, veterinarians can diagnose this specific epilepsy in their canine patients while breeders will be able to identify carriers and revise the breeding plans to avoid future affected puppies. About 15% of the dogs in the breed carry the DIRAS1 mutation and dogs all over Europe and beyond are affected, says DVM Franziska Wieländer from LMU Munich.  

Dogs won’t need to be sed­ated any­more for epi­lepsy re­search 

To characterize the clinical features, researchers utilized a novel wireless video-EEG recording method. This allows a real-time monitoring of the electrical events prior, during and after the seizure episode in unsedated dogs.

– All the wires from electrodes are attached to a small portable device on the dog's back that transmits the data straight to our computers. Thus, the dog is free to move around and we can record the EEG for long periods at one go, explains Professor Fiona James.

She has been previously developing the method at the University of Guelph, Ontario, Canada. 

– Video-EEG is a routine approach in the human epilepsy clinic but only piloted now for the dogs. The beauty of the method is that we can easily correlate the behavioral changes with the recorded electroencephalographs and compare them to human EEG results. Indeed, with this technique we were able to identify epilepsy at an early stage and prior to the development of generalized tonic-clonic seizures. Moreover, we found strikingly similar EEG patterns in dogs that have been described in human myoclonic epilepsy”, describes Professor Andrea Fischer from LMU Munich.

– Video-EEG is a powerful new approach for veterinary epilepsy research compared to previous short, 20-minute interictal measurements under sedation and gives much more accurate results, says DVM Wieländer.

Careful clinical studies helped to establish proper study cohorts to identify the genetic cause.

The study was published in Proceedings of the National Academy of Sciences of the USA (PNAS) on 20 February 2017.

Links

The gene test will be part of the MyDogDNA-gene panel test (www.mydogdna.com).

con­tacts
 

Hannes Lohi, hannes [dot] lohiathelsinki [dot] fi, tel. +358294125085

Riika Sarviaho, riika [dot] sarviahoathelsinki [dot] fi

ori­ginal art­icle

Franziska Wielaender, Riika Sarviaho, Fiona James, Marjo Hytönen, Miguel A. Cortez, Gerhard Kluger, Lotta L. E. Koskinen, Meharji Arumilli, Marion Kornberg, Andrea Bathen-Noethen, Andrea Tipold, Kai Rentmeister, Sofie F. M. Bhatti, Velia Hülsmeyer, Irene C. Boettcher, Carina Tästensen, Thomas Flegel, Elisabeth Dietschi, Tosso Leeb, Kaspar Matiasek, Andrea Fischer, Hannes Lohi (2017) Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS Family GTPase 1. Proceedings of the National Academy of Sciences of the United States of America. DOI: www.pnas.org/cgi/doi/10.1073/pnas.1614478114.

 

https://www.helsinki.fi/en/news/significant-epilepsy-gene-discovery-in-dogs

February 2017

Wednesday, February 22, 2017 - 23:21
VetCompass

Your Help Is Needed.

Vet practices obviously collect and store data on all their patients and until recently this information has not been accessed for any research purposes.

VetCompass, a project run by The Royal Veterinary College (RVC) is changing that. It collects this data from participating practices and is using it to answer questions that will improve companion animal health.  Information from vet practices is collected anonymously and is proving invaluable to veterinary research.

Dan O’Neill, who runs the project for RVC, has indicated his willingness to work with engaged breeds via their Health Co-ordinator to feed back data of specific relevance to them.  He quoted the example of Cavaliers who already have such an arrangement.  Our Breed Health Co-ordinator Ed Hall has indicated our wish to participate.

At the moment VetCompass collects data from around 500 Vet practices in UK and it could be invaluable to our breed for more practices to join the scheme. Dan needs data from at least 1000 Irish Setters before the statistics become meaningful.

Please ask your vet whether the practice has joined the scheme.

The sooner we get the data from 1000 setters the sooner we will get information. Remember the information forwarded to VetCompass is anonymous.

For full information about the scheme go to:

http://www.rvc.ac.uk/vetcompass

 

tommy's head

Saturday, October 1, 2016 - 14:34
Wilko Jansen Bloat Research

It is accepted that, unfortunately, bloat has been known in Irish Setters for many years. In 1972 Rasbridge in his breed notes wrote “ While this condition is not is not as common in Irish Setters as in some other breeds and while my limited experience suggests to me that it is less prevalent now than in say the 30’s it certainly occurs. It would appear to have at least a partial genetic basis perhaps nothing more than an inherited tendency for the condition to occur under certain conditions.” and he names Ch Norna (dob 1926) as dying from bloat.

There have been several research projects into bloat over the years and the most recent is being conducted by Wilko Jansen from The Netherlands. He is not a scientist or vet but has been working as someone with a very keen interest in the Irish setter having owned them since 1968. He has been a member of the Ierse Setter Club (The Irish setter Club of Netherlands) since 1968 and was made an honorary life member in 2015.

In 1970 he was involved first hand with a dog which bloated and died whilst he was looking after the kennels of friends who were also breeders. He had a granddaughter of this bitch who also bloated and another bitch who blew up regularly after meals.

In 1974, as a member of the Breeding Advisory Committee of the Ierse Setter Club he had access to records held by the club and became aware of several cases of bloat that had been reported.  He has had a continuing interest in the health of the breed and was instrumental with Wim Van Gemert in introducing the breeding controls and collection of health data by the club. Although bloat was reported there were other potential health problems reported as well.  The club was the first breed club to send out questionnaires to members and owners of Irish Setters aged 2 years old and this health data was kept on cards.

In 2012, the Animal Health Trust announced a genetic investigation of bloat in the Irish Setter which was believed to be the first investigation to consider the probable genetic component. Unfortunately although the results raised a suspicion that there is an inherited component to the condition, confounding factors prevented the results reaching statistical significance and therefore proof so there was no clear conclusion.

He has recently been given the records and notes of Nel van der Sijde (Goldwyn) a prominent breeder of Irish setters in The Netherlands after the Second World War which mentioned several Irish setters which bloated.

He started his project on bloat in 2014 and at the beginning of 2016 he contacted the Ierse Setter Club and was given permission to use their health database “ZooEasy” for his research in the Dutch population of Irish Setters.

He has concentrated on pedigrees and family relationships between dogs that are known to have bloated. He has published a paper of his own personal opinion based upon his pedigree studies of reported bloat cases by owners and breeders.

He has many Irish setter pedigrees on his database and is continuing to collect information on Irish Setters which have bloated. If you have bred or owned a dog that has bloated then please pass on your information to him. 

If you would like a copy of his paper dated November 2016 please contact him directly.

His email address is:  wilkoatmalcompetsupplies [dot] nl

Monday, February 13, 2017 - 23:50